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Abstract

In this article we make a detailed study of different L2-invariants mainly from the perspective of
analysis.

In Chapter 1 we introduce the readers some basic concepts pertaining to our following discussion of
L2-invariants. In particular, this includes an quick survey of Borel functional calculus, Hodge theory
and equivariant CW-complexes, together with an heuristic approach to Whitehead torsion. Readers
who are familiar with these terms can skip this section and refer back in times of need.

In Chapter 2 we define all the L2-invariants that are central to our discussions. All of them
have been approached from both the topological and analytic angles, with some essential properties
discussed along the way. In the ending sessions of this chapter we shall see the both approaches give
us the same invariant.

In Chapter 3 we study the L2-invariants of symmetric spaces. To do so, one needs a systematic
inspection of heat kernel of the underlying manifolds. Two pillars of this machinery are Harish-
Chandra’s Plancherel formula, which allows us to express the heat kernel in forms of global characters of
irreducible unitary representations, and continuous (g,K)-cohomology, which allows us to investigate
dimension of each irreducible unitary representations. In such case we have many vanishing results,
which help us to further reduce the amount of work. In the last section of Chapter 3 we bring the
analytic data captured by Plancherel formula and the representation data captured by continuous
cohomology together to prove the theorem.

To stay on the main focus of this article is on L2-invariants, we skip most discussion on theory
of von Neumann algebra and C∗-algebra. Well-known results, such as Gelfand-Naimark theorem and
Double Commutant theorem are often cited rather than properly stated. Readers who are interested
in such can consult classical textbooks on such realms such as [Con13], and also [Mur14] and [Dix82]
for a more algebraic approach.

Convention of Notations

Throughout this article we denote Hilbert spaces over complex number C as H, with inner product of
the Hilbert space ⟨−,−⟩. B(H) is used to denote the space of all the bounded linear operators on H
and L(H) the space of all linear operators on H.

There are also cases we need to compare the asymptotic behaviour of two functions. If for two
functions on R, with g ≥ 0, we uses the Big O-notation:

f = O(g) as x→∞

if there exists a constant C > 0 such that |f(x)| ≤ C · g(x) for all x sufficient large.

We also fix the notation C
(2)
∗ to be the ℓ2(G) ⊗ C∗ when C∗ is a chain complex of CG-modules.

The context will specify which the specific group is.
Throughout this article we cross-referred the theorems, propositions, etc. with both term and

numbering. Formulae are referred solely with numbers.
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Chapter 1

Preliminaries

In this chapter we will briefly introduce all pertinent tools that are vital in our later discussion of
L2-invariants.

1.1 Survey on Borel Functional Calculus

In this section we briefly survey Borel functional calculus, one of the most important tools in ensuing
discussions. In general terms functional calculus is used to study the following question: given a linear
operator T on Hilbert space H, how does f(T ) behave on H for a function f : C → C. It turns
out when the spectrum of T is well-behaved enough, we can define f(T ) for a rather large class of
functions. For our purpose we only consider (possibly unbounded) normal operators.

Definition 1.1. A linear operator T on H is normal if T is closed, densely defined linear operator
on H and H∗H = HH∗1

Definition 1.2. If X is a set, Ω is a σ-algebra of subsets of X and H is a Hilbert space. Then a
spectral measure for (X,Ω,H) is a function E : Ω→ B(H) satisfying:

1. For each S ∈ Ω, E(S) is a projection;
2. E(∅) = 0 and E(X) = idH ;
3. E(S1 ∩ S2) = E(S1)E(S2) for S1, S2 ∈ Ω;
4. If {Sn}∞n=1 are pairwise disjoint sets from Ω, then E(⊔∞n=1Sn) =

∑∞
n=1E(Sn).

Note for each h, k ∈ H fixed, we can defined a complex-valued measure Eh,k on X by letting:

For each S ∈ Ω Eh,k(S) := ⟨E(S)h, k⟩ (1.1)

Consequently for any Ω-measurable function ϕ : X → C, we can define a normal operator Tϕ on H as
follows:

Dom(Tϕ) = {h ∈ H |
∫
|ϕ|2 dEh,h <∞}

Then the operator
∫
ϕ dE is uniquely determined by the property that for all h ∈ Dom(Tϕ) and

f ∈ H,
⟨(
∫
ϕ dE)h, f⟩ =

∫
ϕ dEh,f (1.2)

In particular ETλ can be retrieved as χ(−∞,λ](T ), where χS is the characteristic function of S.
The following spectral theorem now asserts that each normal operator determines a unique spectral

measure on C:
1Note the definition inexplicitly says DomN∗N = DomNN∗, but it is not necessary that DomN∗N = DomN .
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1.1. SURVEY ON BOREL FUNCTIONAL CALCULUS

Theorem 1.3 (Spectral Theorem). [Con13, Chapter X, Theorem 4.11] If T is a normal operator
on H, then there is a unique spectral measure E defined on the Borel subsets of C satisfying:

1. T =
∫
z dETz ;

2. E(S)=0 if S is a Borel subset of C and S ∩ spec(T ) = ∅;
3. If U is open subset of C and U ∩ spec(T ) ̸= ∅, then E(S) ̸= 0;
4. If A ∈ B(H) commutes with N and N∗, then A(

∫
ϕ dE) ⊂ (

∫
ϕ dE)A for every Borel function

ϕ on C.

Using spectral theorem we can derive many useful terms related to f . Define f ∈ L(H) to be
positive if f is self-adjoint and ⟨f(v), v⟩ ∈ R+ ∪ {0} for all v ∈ Dom(T ).In such case we may define
a spectral measure on R+ ∪ {0}. In particular, we could define the “square root” of such positive
operators as the following self-adjoint operator:

f1/2 :=

∫ ∞

0
λ1/2 dEfλ (1.3)

where Efλ is the unique spectral measure associated to f . It is easy to see f = f1/2 ◦ f1/2. For an
arbitrary operator f , it is easy to check f∗f is a positive operator, and we define the “absolute value”
of f to be:

|f | := (f∗f)1/2 =

∫ ∞

0
λ1/2 dEf

∗f
λ

As one might expect, there is also an analogue of polar decomposition for unbounded operators:

Theorem 1.4 (Polar decomposition). If T : Dom(T ) ⊂ H1 → H2 is a closed, densely defined
unbounded operator between Hilbert space, then it has a (unique) polar decomposition

T = U |T | (1.4)

where U is a partial isometry, i.e., it is an isometry on the orthogonal complement of kerU . More-
over, U vanishes on the orthogonal complement of the range Im(|T |).

Definition 1.5. Let T : Dom(T ) ⊂ H1 → H2 be a linear operator defined on a dense linear subspace
Dom(T ) of H1.Define an closed extension S of T to be a closed operator S satisfying Dom(S) ⊃
Dom(T ) and S|Dom(T ) = T . In such case we denote S ⊇ T . Define minimal closed extension of T
is then a closed extension Tmin, with domain:

Dom(Tmin) := {x ∈ H1 | ∃{xn}∞n=1 ⊂ Dom(T ) such that lim
n→∞

xn = x and lim
n→∞

Txn exists} (1.5)

and we define Tmin(x) = limn→∞ Txn.

The reader is to note that Tmin corresponds closed extension minimal with respect to all possible
closed extensions, ordered under ⊇.

Definition 1.6. The adjoint of an linear operator T is the operator T ∗, whose domain is defined by:

Dom(T ∗) =
{
v ∈ H2 | ∃u ∈ H1 such that ∀u′ ∈ Dom(T ), ⟨u′, u⟩ = ⟨T (u′), v⟩

}
(1.6)

When H1 = H2, we call T symmetric if T ⊂ T ∗, and self-adjoint if T = T ∗. We call T essentially
self-adjoint if Tmin is self-adjoint, that is, T admits unique self-adjoint extension.

As one might expect, for general unbounded operators, we can also define an maximal closed
extension that is maximal amongst all closed extensions. Nonetheless, within our scope of discussions,
in which cases the operators are often positive and symmetric densely defined, we deduce from the
following lemma that they admit unique extensions to a self-adjoint operator.
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1.2. HILBERT N (G)-MODULE, TRACE AND VON NEUMANN DIMENSION

Lemma 1.7. [Lan12, A2, §1] Let A : Dom(A) ⊂ H → H be a symmetric, closed operator with densely
defined domain. If for all λ ∈ C\R we have Im(A± λ · id) = H, then A is essentially self-adjoint.

Hence it makes no difference to distinguish different closed extensions. For practical purposes, we
concern ourself mostly with minimal extensions. The only significant cases of non-symmetric operators
are dp and δp on p-forms, and for this we appeal to the result by Brüning and Lesch:

Lemma 1.8. [BL92] Let M be a complete Riemannian manifold without boundary. Then there exists
a unique closed extension of dp : Ωpc(M)→ L2Ωp(M) and of δp : Ωpc(M)→ L2Ω(M).

We conclude this section by the following construction of bounded operator on L2-spaces. Define
the essential range of a function ϕ : X → C for some measure space (X,Ω, µ) to be:

essran(ϕ) := {ϕ(S) | S ∈ Ω, µ(X\S) = 0} (1.7)

Proposition 1.9. Let (X,Ω, µ) be any σ-finite measure space and H = L2(X,Ω, µ) be the underlying
Hilbert space. Now for ϕ ∈ L∞(µ) := L∞(X,Ω, µ), we define Mϕ on H by Mϕf = ϕ · f . Now:

L∞(µ)→ B(H) ϕ 7→Mϕ (1.8)

gives an isometric representation of C∗-algebra, with spec(Mϕ) = essran(ϕ).

Proof. Clearly this map is a ∗-homomorphism, hence it suffices to prove ∥ϕ∥∞ = ∥Mϕ∥. Note ∥Mϕ∥ ≤
∥ϕ∥∞ is straightforward. For the other direction, Take:

S := {x ∈ X | |ϕ(x)| ≥ ∥ϕ∥∞ − ϵ} f := (µ(S))−1/2χS

One readily checks ∥Mϕ∥ ≥ ∥ϕf∥22 ≥ ∥ϕ∥∞ − ϵ. Take ϵ→ 0, we have ∥Mϕ∥ ≥ ∥ϕ∥∞.
Next we prove spec(Mϕ) = essran(ϕ). First assume λ /∈ essran(ϕ), hence we can find some

S ∈ Ω such that µ(X\S) = 0 with dist(λ, ϕ(S)) > δ > 0. Now take ψ = (ϕ − λ)−1 ∈ L∞(µ) with
Mψ = (Mϕ − λ)−1 is again bounded, and we have λ /∈ spec(Mϕ).

Conversely, if λ ∈ essran(ϕ), choose {Sn}n∈N a sequence in Ω with dist(λ, ϕ(Sn)) < 1/n. Set
fn := µ(Sn)

−1/2χSn ∈ L2(µ), then we see ∥fn∥2 = 1 and ∥(Mϕ − λ)fn∥2 ≤ 1
n , hence λ ∈ spec(Mϕ) by

approaching n→∞.

1.2 Hilbert N (G)-Module, Trace and von Neumann Dimension

In this section we introduced von Neumann dimension of Hilbert N (G)-module. Note that in [Lüc13,
Chapter 6.1] there is an extended dimension function, defined over all arbitrary N (G)-module, which
only depends only on the ring structure of N (G). For the sake of simplicity we will not discuss it here.

Let G be a discrete group. Define ℓ2(G) to be the completion of CG under the pre-Hilbert norm:

⟨
∑
g∈G

λgg,
∑
g∈G

µgg⟩ :=
∑
g∈G

λgµg (1.9)

Remark 1.1. Given an element in CG one can always identify it with a function f : G → C with
compact support via:

CG −→ Cc(G)
∑
g∈G

λg · g 7−→
(
f : h 7→ λh

)
(1.10)

with the inverse map being f 7→
∑

g∈G f(g)g. Note this map is G-equivariant, i.e.:

(g0 ◦
∑
g∈G

λgg)(h) = (
∑
g∈G

λgg0 ◦ g)(h) = (
∑
g∈G

λg−1
0 gg)(h) = λg−1

0 h = (
∑
g∈G

λgg)(g
−1
0 h)
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1.2. HILBERT N (G)-MODULE, TRACE AND VON NEUMANN DIMENSION

Hence we may also define ℓ2(G) to be:

ℓ2(G) :=
{
f : G→ C |

∑
g∈G
|f(g)|2 <∞

}
(1.11)

where G acts on f via (g ◦f)(h) = f(g−1h). The second definition also applies to general ℓp(G)-spaces
and when G is a Lie group.

Definition 1.10. The group von Neumann algebra N (G) of a discrete group G is defined as the
C∗-subalgebra of B(ℓ2(G)) that contains all G-equivariant bounded operators.

Definition 1.11. A Hilbert N (G)-module is a Hilbert space V together with a isometric linear
G-action such that there exists an isometric linear G-embedding of V into H ⊗ ℓ2(G) for some Hilbert
space H. A morphism of Hilbert N (G)-module is a bounded G-equivariant operator. A Hilbert
N (G)-module is called finitely generated if there is a surjection:

n⊕
i=1

ℓ2(G) ↠ V

Remark 1.2. Note in the definition of Hilbert N (G)-module only the isometric G-action is intrinsic.
We only request the existence of H for such G-embedding. Meanwhile, the Hilbert space structure
also gives the chain complexes of Hilbert N (G)-modules special structures, for instance:

1. From Inverse Mapping Theorem (c.f. [Con13, Chapter III, Theorem 12.5]) we see every
bounded injective map between Hilbert spaces have inverse map bounded. Hence a map f :
U → V of Hilbert N (G)-modules is an isomorphism if and only if it is bijective;

2. If f : V →W a weak isomorphism between Hilbert N (G)-modules, i.e., f is injective and has
dense image; then the unitary part is by Polar decomposition an isometric isomorphism between
V and W .

3. Recall any closed subspace U of a Hilbert space V is a closed subspace is a Hilbert space with
orthogonal complement W ⊆ V another Hilbert subspace such that V = U ⊕W . Hence every
exact sequence of Hilbert N (G)-module splits.

It is natural to consider the trace of a positive operator. Nonetheless, as the group G can be
arbitrarily large, the trace of identity operator is often infinite. For this reason we want some suitable
trace function, which nicely encodes the G-action:

Definition 1.12. For a positive endomorphism f : V → V of Hilbert N (G)-module, we define f to
be the composite map:

f : H ⊗ ℓ2(G) V V H ⊗ ℓ2(G)π f ι (1.12)

where H is a Hilbert space into which V admits an isometric G-embedding ι, and π is the orthogonal
projection of H ⊗ ℓ2(G) onto V . Now define the von Neumann trace of f as:

trN (G)(f) :=
∑
i∈I
⟨f(bi ⊗ e), bi ⊗ e⟩ (1.13)

where {bi | i ∈ I} is a Hilbert basis for H.

Remark 1.3. Note the definition of von Neumann trace is independent of the choice of Hilbert space
H, the choice of basis {bi | i ∈ I}, as well as the choice of G-orthogonal projection π.

Definition 1.13. We define the von Neumann dimension of a Hilbert N (G)-module to be the
trace of identity, i.e.:

dimN (G)(V ) := trN (G)(id : V → V )

Remark 1.4. It is easy to derive from the definition that for any map f between Hilbert N (G)-
modules, trN (G)(f) = 0 if and only f = 0. Consequently dimN (G)(V ) = 0 if and only if V = 0.
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1.3. HODGE THEORY

1.3 Hodge Theory

In this section we will have a brief review of the theory of harmonic forms, with other pertinent topics.
For a detailed discussion on this topic in the case of compact manifolds one can refer to [Mor01,
Chapter 4].

Let M be a smooth manifold without boundary (possibly noncompact). Denote Ωp(M) the space
of smooth p-forms on M . One can take that as the spaces of sections of the exterior algebra bundle
Λp(TM ⊗R C) over M . Recall the wedge product of the exterior algebra can be extended to a map:

∧ : Ωp(M)× Ωq(M)→ Ωp+q(M) (1.14)

Furthermore the p-th differential on the exterior algebra can also be extended to a map dp : Ωp(M)→
Ωp+1(M) which is uniquely determined by the following properties:

1. dp is C-linear;
2. d0f = grad f for any f ∈ Ω0(M) = C∞(M);
3. (product rule) for all ω ∈ Ωp(M) and η ∈ Ωq(M), we have:

dp+q(ω ∧ η) = (dpω) ∧ η + (−1)pω ∧ dqη

4. dp+1 ◦ dp = 0

then the differential d∗ together with Ω∗(M) defined s a cochain complex:

· · · Ωp−1(M) Ωp(M) · · ·dp−2 dp−1 dp

the cohomology of which we defined as de Rham cohomology of M and denote by Hp
dR(M).

If we further endow M with a Riemannian metric and an orientation, we can define an inner
product on forms with respect to the metric. Let n = dim(M). Define the Hodge star operator
⋆ : Ωp(M)→ Ωn−p(M) by a C∞(M)-linear operator such that:

⋆ (fi1···ikdxi1 ∧ · · · ∧ dxik) = sgn(I, J)fi1···ikdxj1 ∧ · · · ∧ dxjn−k
(1.15)

where j1 < · · · < jn−k is the rearrangement of the complement of i1 < · · · < ik and sgn(I, J) the sign
of the permutation i1, · · · , ik, j1, · · · , jn−k.

Define the adjoint of the exterior differential δp = (−1)np+n+1 ⋆ d⋆ : Ωp(M) → Ωp−1(M), and
Laplace operator on p-forms of the M is defined to be:

∆p := dp−1 ◦ δp + δp+1 ◦ dp : Ωp(M)→ Ωp(M) (1.16)

Denote now Ωpc(M) the subspace of smooth p-forms with compact support. Then Ωpc(M) forms a
pre-Hilbert space under the inner product:

⟨ω, η⟩L2 :=

∫
M
ω ∧ ⋆η =

∫
M
⟨ωx, ηx⟩ dx (1.17)

by the integrating the inner product of each fibre over the whole manifold. Denote L2Ωp(M) to be the
completion of Ωpc(M) with respect to this inner product. Further define the space of L2-integrable
harmonic smooth p-forms we have:

Hp(2)(M) := {ω ∈ L2Ωp(M) ∩ Ωp(M) | ∆p(ω) = 0} (1.18)
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1.4. SURVEY ON G-CW COMPLEXES AND TORSION INVARIANTS

1.4 Survey on G-CW Complexes and Torsion Invariants

In this section we provide the concepts pertaining to G-CW complexes and Whitehead torsion of a
group G. These concepts are central to our discussions on L2-chain complexes as well as on L2-torsions.
For a thorough discussion on these topics the reader is advised to consult [tD87, Chapter II].

First we recall some basic chain constructions.

Definition 1.14. Given f : C∗ → D∗ be a chain map between chain complexes. Then the mapping
cylinder cyl∗(f∗) to be the chain complex C∗−1 ⊕ C∗ ⊕D∗, with differential being:−cn−1 0 0

− id cn 0
fn−1 0 dn

 : Cn−1 ⊕ Cn ⊕Dn −→ Cn−2 ⊕ Cn−1 ⊕Dn−1 (1.19)

Define the mapping cone cone∗(f∗) to be the chain complex C∗−1 ⊕D∗, with the differential being:[
−cn−1 0
fn−1 dn

]
: Cn−1 ⊕Dn −→ Cn−2 ⊕Dn−1 (1.20)

From the definition one can easily derive the a canonical short exact sequence:

0 C∗(X) cyl(C∗(f)) cone(C∗(f)) 0 (1.21)

Definition 1.15. A G-CW complex X is a G-space together with a G-invariant filtration:

∅ = X−1 ⊂ X0 ⊂ · · · ⊂ Xn ⊂
∪
n≥0

Xn = X

with Xn obtained from Xn−1 by attaching equivariant n-dimensional cells via the following G-pushout:

⨿
i∈In G/Hi × Sn−1 Xn−1

⨿
i∈In G/Hi ×Dn Xn

⨿
i∈I qi

ι⨿
i∈I Qi

(1.22)

where {Hi}i∈I is a family of closed subgroups of G and all maps in this pushout are G-equivariant,
where ι is a closed embedding. Note X is endowed with the colimit topology with respect to the
filtration above.

Remark 1.5. One may divest the G-setting by noting there is a bijection between equivariant maps
ϕ : G/H ×Dn → Xn and non-equivariant maps ϕ′ : Dn → XH via the following assignment:

ϕ(gH, x) = g · ϕ′(x) ∀x ∈ Xn, g ∈ G (1.23)

with XH the H-fixed point set. More generally if G is a Lie group, with H ⊆ G compact subgroup,
then XH inherits a WH-CW complex structure. Note the Weyl group WH of H ⊆ G is:

WH := NH/H = {g ∈ G | gHg−1 = H}/H (1.24)

We say a G-space is proper if for all x, y ∈ X, there are open neighbourhoods Ux and Uy
respectively such that the closure of {g ∈ G | gUx ∩ Uy ̸= ∅} is compact in G. The reader can
refer to [tD87, Chapter I.3] for various equivalent definitions of proper action. In particular, we have
a free G-CW complex is proper. However, not every free G-space is proper since G due to bizarre
topology.
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1.4. SURVEY ON G-CW COMPLEXES AND TORSION INVARIANTS

A G-CW complex is finite if it is cocompact, and is of finite type if each n-skeleton is cocompact.
A G-map f : X → Y is a G-homotopy equivalence if f is a homotopy equivalence and the
homotopy itself is a G-equivariant map (note G acts on [0, 1] trivially). In the case when X,Y are
G-CW complexes, this means for any isotropy group of X or Y the induced map fH : XH → Y H is
a weak homotopy equivalence, i.e., f∗ induces a bijection on all homotopy groups (See e.g. [tD87,
Chapter II, Proposition 2.7]). Similar to ordinary homotopy theory we have a equivariant version of
cellular approximation theorem:

Theorem 1.16. [tD87, Chapter II, Theorem 2.1] Let f : X → Y a G-map between G-CW complexes.
then there exists a G-homotopy H : X × [0, 1]→ Y such that H0 = f and H1 is cellular.

Now suppose G is discrete. The cellular ZG-chain complex C∗(X) of a G-CW complex is defined
as in ordinary cellular homology. Note if one has chosen a G-pushout as in Definition 1.15, we then
have chosen a preferred ZG-isomorphism:

(
⊕
i∈In

(Qi, qi))∗ :
⊕
i∈In

Z[G/Hi] −→ Cn(X) (1.25)

by sending each (gHi)i∈In to the element in Cn(X) representing (Qi, qi)(gHi, (D
n, Sn−1)). If we choose

a different G-pushout, we obtain another isomorphism, which are, up to a sign change, differed by the
composition of an automorphism which permutes the summands:⊕

i∈In

ϵiRgi :
⊕
i∈In

Z[G/Hi] −→
⊕
i∈In

Z[G/Hi] (1.26)

with gi ∈ G, ϵi ∈ {±1} and Rgi sends gHi to ggiHi.
The above discussion motivates the following discussion. Let f : X → Y a G-homotopy equivalence

of finite G-CW complexes. It then induces a G-equivariant chain homotopy equivalence between
cellular ZG-chain complexes.Now we see the mapping cone cone∗(f∗) =: Z∗ is a contractible finite free
ZG-chain complex. Choose a chain contraction γ∗ : Z∗ → Z∗+1 and denote the Zodd and Zeven to be
the direct sum of all the odd and even degree terms of Z∗ respectively, we then have an isomorphism:

(dZ + γ)odd : Zodd → Zeven (1.27)

Choose an equivariant cellular basis of Z∗, we can represent (dZ+γ)∗ as an element in GL(n,ZG) with
n the cardinality of cellular basis. But such an isomorphism is not canonical chosen for the following
reasons:

1. Z should be allowed to add redundant cells without changing the isomorphism, up to a certain
equivalence class;

2. Z do not have a preferred ordering of the cellular basis;
3. 1.26 shows the choice of a cellular ZG-basis is not quite unique, subject to a group action and

a sign change

Hence we want to define an invariant associated to (dZ + γ)odd that resolves the listed problems. To
remedy the first problem, one can consider the isomorphism instead in

GL(ZG) := colimn→∞GL(n,ZG)

with the colimit is taken by embedding GL(n,ZG) into the upper-left block of GL(n+ 1,ZG).
To resolve the second problem, we require our invariant to be a simple G-homotopy invariance

(see [Lüc06, Chapter I.4] for definitions and general discussions). Heuristically speaking, this allows
the G-homotopy equivalence to be constituted by a series of elementary expansions and collapses, each
of which take place at individual cells. These actions correspond to elementary matrices in GL(ZG),
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1.4. SURVEY ON G-CW COMPLEXES AND TORSION INVARIANTS

hence we want to modulo these elements as well. By Whitehead Lemma [Mil16, Lemma 3.1]
the elementary matrices are exactly the derived group of GL(ZG), hence it motivates the following
abelianization of GL(ZG):

K1(ZG) := GL(ZG)/[GL(ZG), GL(ZG)] (1.28)

Now the last problem gives rise to the following definition:

Definition 1.17. Given f : X → Y a G-homotopy equivalence of finite free G-CW complexes as
above. We define the Whitehead group Wh(G) to be the cokernel of the following map:

G× {±1} → K1(ZG) (g,±1) 7→ [(±g)] (1.29)

where (±g) the class of 1× 1-matrix. We also define Whitehead torsion τ(f) of f to be an element
in Wh(G) that is the image of the class (dcone∗(C∗(f))+γ)odd ∈ K1(ZG) under the canonical projection
K1(ZG) ↠ Wh(G).

11



Chapter 2

Analytic and Topological L2-Invariants

In this chapter we will use spectral density function, Borel functional calculus and heat kernel to elicit
a unified approach to various L2-invariants. This approach renders more insight into the Riemannian
structure of the underlying manifold, whereas a careful analysis of spectrum of the Laplace operators
will be conducive. In the second part of this chapter we will have a glimpse of the topological aspects
of L2-invariants, and conclude this chapter by bridging the topological world with their analytic
counterparts.

2.1 Spectral Density Function

We first deal with spectral density function, which is central to the definition of Novikov-Shubin
invariant and analytic definition of L2-torsion.

Definition 2.1. Let f : Dom(f) ∈ U → V be G-equivariant closed densely defined operator between
Hilbert N (G)-modules. For λ > 0, define:

L(f, λ) := {L ⊂ Dom(f) is a Hilbert N (G)-submodule | ∀x ∈ L, ∥f(x)∥ ≤ λ∥x∥}

The spectral density function of f is defined to be:

F (f) : [0,∞) −→ [0,∞] λ 7→ sup{dimN (G)(L)|L ∈ L(f, λ)}

The spectral density function of a f captures the dimension of space on which f has operator norm
less than a constant c. In the case of compact operators (or more generally of those operators with
only discrete spectrum), this is just the direct sum of eigenspaces with corresponding eigenvalues in
the ball centred at zero of radius c: B0(c) ⊂ C.

The spectral density function can be related to the spectral measure in Definition 1.2 via following
lemma:

Lemma 2.2. Let U and V be Hilbert N (G)-modules. Let f : Dom(f) ⊂ U → V be a G-equivariant
closed densely defined operator. Then for λ ∈ R and x ∈ Dom(f):

∥f(x)∥

{
> |λ| · ∥x∥ if Ef

∗f
λ2

(x) = 0, x ̸= 0;

≤ |λ| · ∥x∥ if Ef
∗f

λ2
(x) = x

where {Ef
∗f

λ2
} is the spectral family associated to f∗f . Furthermore, the spectral projections Ef

∗f
λ2

are
G-equivariant and

F (f)(λ) = dimN (G)(Im(Ef
∗f

λ2
)) (2.1)

12



2.1. SPECTRAL DENSITY FUNCTION

Proof. To prove the first part, pick x ∈ U nonzero such that Ef
∗f

λ2
(x) = 0. Since Dom(f) is dense in

U , hence is Dom(f∗f) dense in U . Also Dom(f∗f) is a core for Dom(f), that is, for any x ∈ Dom(f)
there is a sequence xn ∈ Dom(f∗f) such that limn→∞ xn = x and limn→∞ f(xn) = f(x). Note the
spectral projections are right-continuous with respect to spectrum, hence we have limµ↓λ2 E

f∗f
µ (x) =

Ef
∗f

λ2
(x) = 0 and there exists a ϵ > 0 such that:

⟨Ef
∗f

λ2+ϵ
(x), x⟩ < 1

2
⟨x, x⟩

Recall now 1.2, we have:

∥f(xn)∥ =
∫ ∞

0
µ d⟨Ef∗fµ (xn), xn⟩

≥
∫
(λ2,λ2+ϵ]

µ d⟨Ef∗fµ (xn), xn⟩+
∫
(λ2+ϵ,∞)

µ d⟨Ef∗fµ (xn), xn⟩

≥ λ2 · ⟨Ef
∗f

λ2+ϵ
(xn), xn⟩ − ⟨Ef

∗f
λ2

(xn), xn⟩+ (λ2 + ϵ) · (⟨xn, xn⟩ − ⟨Ef
∗f

λ2+ϵ
(xn), xn⟩)

= (λ2 + ϵ) · ∥xn∥ − ϵ · ⟨Ef
∗f

λ2+ϵ
(xn), xn⟩ − λ2 · ⟨Ef

∗f
λ2

(xn), xn⟩

Taking the limit n→∞ on both sides of the inequality, we have, by the above choice of ϵ:

∥f(x)∥2 ≥ (λ2 + ϵ) · ∥x∥2 − ϵ · ⟨Ef
∗f

λ2+ϵ
(x), x⟩ − λ2 · ⟨Ef

∗f
λ2

(x), x⟩

> (λ2 + ϵ) · ∥x∥2 − ϵ

2
· ∥x∥2 − 0 > λ2 · ∥x∥2

Hence we have proved the first part of the lemma. Note the first part directly implies that Im(Ef
∗f

λ2
) ∈

L(f, λ), which by taking supremum we have dimN (G)(Im(Ef
∗f

λ2
)) ≤ F (f)(λ).

Moreover, the first part also implies Ef
∗f

λ2
|L = idL for all L ∈ L(f, λ). Since L ⊆ Im(Ef

∗f
λ2

)
and from the additivity of von Neumann dimension with respect to weakly exact sequence of Hilbert
N (G)-modules, we have the dimN (G)(L) ≤ dimN (G)(Im(Ef

∗f
λ2

)) for L ∈ L(f, λ).

Remark 2.1. As a special case of this lemma, we can easily derive from a similar argument that iff
being a positive operator, then F (f)(λ) = dimN (G)(Im(Efλ)).

More generally we can define density function F : [0,∞) → [0,∞] to be a monotone non-
decreasing and right-continuous function. To each density function one can associate a unique Borel
measure via the following procedure: First define a pre-measure on all the half-open sets as:

µ((a, b]) := F (b)− F (a)

then extend it to all Borel sets on the real line via Carathéodory extension theorem (See for instance
[Kle13, Theorem 1.41]), this then defines a Borel measure, which is in fact the spectral measure
associated to the trace function of f , in the sense of Definition 1.12:

Lemma 2.3. For f : Dom(f) ⊂ U → V a G-equivariant positive closed densely defined operator
between Hilbert N (G)-modules, we have, for any Borel subset S of R:

µf (S) = trN (G)E
f (S) (2.2)

where Ef is the spectral measure associated to f and µf is the measure defined using spectral density
function, as above:

Proof. Since the half-open sets {(−∞, λ] | λ ∈ R} forms a base for Borel sets, it suffices to prove the
statement for these sets. Now from Lemma 2.2:

µf ((−∞, λ]) = F (f)(λ)− F (f)(−∞) = F (f)(λ) = dimN (G)(ImEfλ)
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2.1. SPECTRAL DENSITY FUNCTION

Now since Efλ is a projection, so in particular its image is closed [Con13, Chapter II, Proposition 3.2],
hence we can choose a basis I = I ′ ⊔ I ′′ of U such that {ei | i ∈ I ′} form a base of kerEfλ and
{ej | j ∈ I ′′} form a base of ImEfλ = (kerEfλ)

⊥.
Now by considering the canonical isometric linear G-embedding of V ↪→ V ⊗ ℓ2(G), we have

f |V⊗e = f where f is as defined in Definition 1.12. Now

dimN (G)(ImEfλ) =
∑
i∈I′′
⟨Efλei, ei⟩ =

∑
i∈I
⟨Efλei, ei⟩ = trN (G)(E

f
λ) (2.3)

An important invariant associated to each density function, which measures its asymptotic be-
haviour when approaching zero:

Definition 2.4. Let F be a Fredholm density function, i.e., there exists a λ > 0 such that F (λ) <∞.
We then define its Novikov-Shubin invariant to be α(F ), as follows:

α(F ) :=

{
lim infλ↓0

ln(F (λ)−F (0))
ln(λ) ∈ [0,∞], if ∀λ > 0, F (λ) > F (0);

∞+ if otherwise
(2.4)

Remark 2.2. Note here the use of∞+ is a convention we adopted to make Novikov-Shubin invariant
better fitting into settings such as additivity and also to distinguish the cases in which the density
functions behaves abnormally from those of which that the density function takes a constant value
around zero. For further details, please refer to [Lüc13, Notation 2.10].

The reader might observe only the asymptotic behaviour determines the value of Novikov-Shubin
invariant, and this motivates a comparison of density function near 0. Indeed we write F ⪯ G if there
are C > 0 and ϵ > 0 such that:

∀λ ∈ [0, ϵ], F (λ) ≤ G(C · λ) (2.5)

Moreover, we write F ≃ G if F ⪯ G and G ⪯ F . Some immediate consequences are recorded down
here:

Lemma 2.5. If F and F ′ are density functions with F ′ be Fredholm. Let f : U → V be a morphism
of N (G)-Hilbert modules. Then:

1. If F ⪯ F ′, then F is Fredholm and b(2)(F ) ≤ b(2)(F ′); If further b(2)(F ) = b(2)(F ′), then
α(F ) ≥ α(F ′). In particular, if b(2)(F ) = b(2)(F ′) and F ≃ F ′, we have α(F ) = α(F ′);

2. If i : V → V ′ injective with closed image, and p : U → U ′ surjective and b(2)(p) is finite, then f
is Fredholm if and only if i ◦ f ◦ p is Fredholm, in which case α(i ◦ f ◦ p) = α(f);

3. f is an isomorphism, then b(2)(f) = 0, f is Fredholm, and α(f) =∞+;
4. If F, F ′ are Fredholm, then α(F + F ′) = min{α(F ), α(F ′)}.

Proof. 1. follows directly from definition; 2. is a consequence of Inverse Mapping Theorem, which
implies

F (i ◦ f ◦ p)(λ) ≃ F (f)(λ)− dimN (G)(ker(p)) (2.6)
3. follows from the fact that each isomorphism is bounded from below, hence the spectrum is disjoint
from 0. Then the spectral density function F (f) is constant in a neighbourhood of 0 hence α(f) =∞+.
This can be seen by applying Borel functional calculus to f∗f .

To prove 4., we may assume without loss of generality that b(2)(F ) = b(2)(F ′) = 0. Note α(F+F ′) ≤
min{α(F ), α(F ′)} is direct from the first part. To prove the reverse inequality, It suffices to consider
the case when α(F ) ≤ α(F ′) and 0 < α(F ) ≤ ∞. Choose any α > 0 such that α(F ) > α. Then we have
for sufficiently small λ, we have: F (λ), F ′(λ) ≤ Kλα for some constant K. Then (F +F ′)(λ) ≤ 2Kλα

which shows α(F + F ′) ≥ α.
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2.2. FUGELEDE-KADISON DETERMINANT

2.2 Fugelede-Kadison determinant

Based on spectral density function we can define an notion of determinant on morphisms of Hilbert
N (G) modules. This will be crucial to our later study of L2-torsion, where one need to distinguish
isomorphisms from each other.

Definition 2.6. Let f : U → V be a morphism of finite dimensional Hilbert N (G)-modules. We call
f is of determinant class if: ∫ ∞

0+
ln(λ) dF (λ) > −∞ (2.7)

Define its (generalized) Fuglede-Kadison determinant by:

detN (G)(f) :=

{
exp(

∫∞
0+ ln(λ) dF ) if

∫∞
0+ ln(λ) dF > −∞

0 if otherwise
(2.8)

A few properties directly derived from definition and Lemma 2.5 are listed here:

Lemma 2.7. Let f : U → V be a morphism of finite dimensional Hilbert N (G)-modules with
respective spectral density function. Then:

1. If f is invertible, we get det(f) = exp(12 tr(ln(f
∗f)));

2. If f⊥ : ker(f)⊥ → Im(f) the induced weak isomorphism, then det(f) = det(f⊥).
3. det(f) = det(f∗) =

√
det(f∗f) =

√
det(ff∗);

Proof. 1. is a direct consequence of definition and Lemma 2.3:

tr(ln(f∗f)) =

∫ ∞

0+
dtr(Ef

∗f
λ ) = 2 ·

∫ ∞

0+
ln(λ) dF (f)

2. and 3. are directly from Lemma 2.5. Note since the determinant exclude point 0. We may then
suffice to consider F (f⊥) = F (f)− F (0).

The reader is to observe that the Fuglede-Kadison determinant behaves similarly as conventional
determinant on finite-dimensional matrices.

Lemma 2.8. Let f : U → V and g : V → W be morphisms of finite-dimensional Hilbert N (G)-
modules such that f has dense image and g is injective. Then:

deg(g ◦ f) = det(g) · det(f)

Meanwhile, given f1 : U1 → V1, f2 : U2 → V2 and f3 : U2 → V1 be morphisms of finite-dimensional
Hilbert N (G)-modules, such that f1 has dense image and f2 is injective. Then:

det

(
f1 f3
0 f2

)
= det(f1) · det(f2)

Sketch of Proof. Proof of the first assertion can be found in [Lüc13, Theorem 3.14]. The basic idea is
as follows: By Polar decomposition and the fact f∗ and g both are injective, it suffices to establish the
case when f and g are injective positive morphisms. First consider the case when both are invertible,
then by holomorphic functional calculus (c.f. [Lüc13, Lemma 3.18]) to integrate a path between
tr(ln(gf2g)) and tr(ln(g2)), so as to prove:

tr(ln(gf2g)) = 2 tr(ln(g) + ln(f))
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2.3. DEFINITION OF ANALYTIC L2-INVARIANTS

Next consider injective positive morphisms, in which case the operator norms are bounded from below.
Hence there is a gap in the spectrum around 0, now we can choose ϵ and δ small enough such that
f − ϵ · id and g − δ · id are both invertible positive morphisms, hence apply the first scenario. Then
approach both ϵ and δ to 0, in which we get:

det(gf2g) = det(f)2 · det(g)2

and now det(g ◦ f) =
√
det(gf)2 =

√
det(gf2g) =

√
det(f)2 det(g)2 = det(f) det(g).

Now the second assertion follows from the first, and the following manipulation:(
f1 f3
0 f2

)
=

(
1 0
0 f2

)(
1 f3
0 1

)(
f1 0
0 1

)
and the fact that we can write:1 f3 0

0 1 0
0 0 1

 =

[1 0 0
0 1 0
0 −f3 1

 ,

1 0 1
0 1 0
0 0 1

]

where [A,B] = ABA−1B−1 is the commutator.

2.3 Definition of Analytic L2-Invariants

Throughout this section we adopt the settings as in L2-Hodge-de Rham Theorem, i.e.,
Let M be a cocompact free proper G-manifold without boundary with G-invariant Rie-
mannian metric. We then define the heat operator e−t∆∗ of Laplace operator to be:

e−t∆p :M ×M → Hom(π∗1Λ
p(TM), π∗2Λ

p(TM)) (2.9)

a smooth section, with πi :M×M →M the canoncial projection to the i-th factor. Note by functional
calculus we can define, for x ∈M , an bounded linear operator e−t∆p(x) : L2Ωp(M)→ L2Ωp(M) by:

e−t∆p(x)(ω) =

∫
M
Kp(t, x, y)(ωy) dvoly (2.10)

where Kp(t, x, y) is the heat kernel, which is the smooth Schwartz kernel corresponds to the integral
operator e−t∆p(x, y).

Remark 2.3. The reader is to note in general cases of noncompact manifold the heat operator is not
of trace class, i.e., trC(Kp(t, x, y)) is not integrable over M , or the heat kernel may not exist (even
as a distribution) a priori. Nonetheless, For our case when M has a properly discontinuous group of
isometries Γ acting on M such that the quotient is compact, then the heat kernel KM of M exists,
and is related to heat kernel KΓ\M of the compact quotient Γ\M , via:

KΓ\M (t, x, y) =
∑
γ∈Γ

KM (t, x, γ · y) (2.11)

For more details in this aspect, the readers is advised to consult [Cha84, Chapter VI.4] for the compact
case and [D+79] for the noncompact case.

We are now ready to define the analytic L2-Betti number:

Definition 2.9. The analytic p-th L2-Betti number, which we also denote as b(2)p (M), is defined
by:

b(2)p (M) := lim
t→∞

∫
F
trC(e

−t∆p(x, x)) dvol (2.12)

where F is a fundamental domain for the G-action, i.e., an open subset F ⊂M such that:
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2.3. DEFINITION OF ANALYTIC L2-INVARIANTS

1. M =
∪
g∈G g · F ;

2. g · F ∩ F ̸= ∅ if and only if g = 1;
3. the topological boundary ∂F has measure zero.

Hence in our case integrating over F is same as integrating over F , which is actually a compact
manifold (possibly with boundary). Thus there is no ambiguity in the heat kernel not being of trace
class.

Definition 2.10. Given dp : Ωpc(M)→ L2Ωp+1(M) and ∆p : Ω
p
c(M)→ L2Ωp(M). Denote:

(dpmin)
⊥ : Dom(dpmin) ∩ Im(dp−1

min )
⊥ → Im(δp+2

min )
⊥

the operator induced by dpmin. We then define the analytic p-th spectral density function of M
by:

Fp(M) := F ((dpmin)
⊥) F∆

p (M) := F ((∆p)min)

and define their respective analytic p-th Novikov-Shubin invariant of M by:

αp(M) := α(Fp−1(M)) α∆
p (M) := α(F∆

p (M))

Lastly we define the L2-analytic torsion. This, as an analog of Whitehead torsion, is a secondary
invariant, i.e., it is not aG-homotopy invariant. To prepare for the definitions, We need first an analytic
version of determinant class. Later in Lemma 2.15 we prove this is equivalent to Definition 2.6.

Recall the Laplace transform of a function f : R→ R is defined by:

θf (t) =

∫ ∞

0
e−tλf(λ) dλ (2.13)

Definition 2.11. M is of analytic determinant class if for each 0 ≤ p ≤ dim(M), there exists a
ϵ > 0 such that: ∫ ∞

ϵ
t−1 · (θp(t)− b(2)p (M)) dt <∞ (2.14)

where
θp(t) := θF∆

p
(t) =

∫ ∞

0
e−tλ dF∆

p (λ) (2.15)

Remark 2.4. As a direct consequence of Lemma 2.3, we see:

θp(t) =

∫ ∞

0
e−tλ d(trN (G)(E

∆p

λ ))

= trN (G)(

∫ ∞

0
e−tλ dE

∆p

λ )

= trN (G)(e
−t(∆p)min)

=

∫
F
trC(e

−t∆p(x, x)) dvol

(2.16)

where the second equality follows from 1.2 or the general fact that the trace function is ultra-weakly
continuous. So this function indeed is the trace of heat kernel.

Lemma 2.12. For a Fredholm spectral density function F , we have, for all λ > 0:

F (λ) ≤ θF (t) · e−tλ (2.17)

Moreover, θF (t) < ∞ for all t > 0 if and only if for all t > 0, there is a constant C(t) such that
F (λ) ≤ C(t) · e−tλ holds for all λ ≥ 0. In this case we have:

θF (t) = t ·
∫ ∞

0
e−tλ · F (λ) dλ (2.18)
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2.3. DEFINITION OF ANALYTIC L2-INVARIANTS

Proof. Since e−tλ is absolutely continuous and F is integrable on [0,K] 1, we can then use integration
by parts and monotone convergence theorem for 0 < ϵ < K <∞,∫ K

ϵ+
e−tλ dF (λ) = e−tK · F (K)− e−tϵ · F (ϵ) + t

∫ K

ϵ
e−tλ · F (λ) dλ

ϵ→0+−→ e−tK · F (K)− F (0) + t

∫ K

0
e−tλ · F (λ) dλ

Adding F (0) on both sides, we then have:

e−tK · F (K) = (1− t) ·
∫ K

0
e−tλ · F (λ) dλ ≤ (1− t)θp(t) (2.19)

Hence the first part of the lemma is proved.
Now assume θF (t) is finite, we have F (λ) ∈ O(etλ) for all fixed t. To see the other direction is

true as well, assume F (λ) ≤ C(t/2) · e−
t
2
λ, and we then have for t > 0, limt→∞ e−tλ · F (λ) = 0. Now

by tending K →∞ in 2.19 and we then see 2.18 readily follows from Monotone convergence theorem.
Moreover,

θF (t) ≤ t ·
∫ ∞

0
e−tλ · C(t/2) · e

t
2
λ dλ = 2C(t/2) (2.20)

So the other direction is proved as well.

From this lemma we can conclude the following:

Proposition 2.13. If α∆
p (M) =∞+, then there exists a ϵ > 0 and a constant C(ϵ) > 0 such that for

all t > 0,
θp(M) ≤ C(ϵ) · eϵt (2.21)

If α∆
p (M) ≠∞+. Then:

α∆
p (M) = lim inf

t→∞

− ln(θp(t)− b(2)p (M))

ln(t)
(2.22)

Remark 2.5. Before giving the proof we need to justify that right-hand side of 2.22 indeed gives a
positive number. First observe θp(t) is monotone non-increasing with respect to t, and by dominated
convergence theorem we have limt→∞ θp(t) = F (0) = b

(2)
p (M). Hence we see − ln(θp(t) − F (0)) and

ln(t) always have the same sign for sufficiently large t.

Proof. Taking F = F∆
p and first consider the case when α∆

p (M) = ∞+. Recall Definition 2.4, this
means there is a gap in the spectrum of ∆p at zero, i.e., F (λ) = F (0) holds for 0 < λ < ε for some
ε > 0. For t > 2:

θp(t)− F (0) = t ·
∫ ∞

0
e−tλ(F (λ)− F (0)) dλ

≤ t ·
∫ ∞

ϵ
e−tλ · F (λ) dλ

≤ t ·
∫ ∞

ϵ
e−tλ · θp(1) · eλ dλ

= θp(1)t ·
∫ ∞

ϵ
e(−t+1)λ dλ

= 2θp(1)e
ϵ · e−tϵ

(2.23)

1Note F is not in general integrable, but for our case the von-Neumann dimension of L2-cohomology are finite at each
dimension due to the the manifold being co-compact, whence we may take F being integrable on every bounded set.
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2.3. DEFINITION OF ANALYTIC L2-INVARIANTS

Note the second inequality follows from the first part of the lemma. Hence θp(t)− F (0) ≤ C(ϵ) · e−tϵ.
Now if α∆

p (M) ̸= ∞+, by possibly replacing F by F (λ) − F (0) we may assume F (0) = 0. Then
2.22 amounts to say:

lim inf
λ↓0

lnF (λ)

ln(λ)
= lim inf

t→∞

− ln(θp(t))

ln(t)
(2.24)

We may again assume the left-hand side is great than 0, for the other case is trivially true. Then
consider lim infλ↓0

ln(F (λ))
ln(λ) > α > 0. This means we can find a ϵ > 0 such that F (λ) ≤ λα for all

λ ∈ (0, ϵ). From the lemma above we yield:

θp(t) ≤ t ·
∫ ϵ

0
e−tλ · λα dλ+ t ·

∫ ∞

ϵ
e−tλθF (1) · eλ dλ

≤ t ·
∫ ∞

0
e−tλ · λα dλ+ tθp(t) ·

∫ ∞

ϵ
e(−t+1)λ dλ

≤ t ·
∫ ∞

0
e−tλ · λα dλ+ θp(1)

t

t− 1
· e(−t+1)ϵ

= Γ(α+ 1) · t−α + θp(1)
t

t− 1
· e(−t+1)ϵ

From the above equality we see the θp(t) = O(t−α) as t→∞. Now:

ln(θp(t)) = O(ln(t−α)) = O(−α ln(t)) (2.25)

as t → ∞. Hence we conclude α ≤ lim inft→∞
− ln(θp(t))

ln(t) . This proves lim infλ↓0
lnF (λ)
ln(λ) is less than

lim inft→∞
− ln(θp(t))

ln(t) .

To prove lim infλ↓0
lnF (λ)
ln(λ) ≥ lim inft→∞

− ln(θp(t))
ln(t) , again we suffices to treat the case when the right

hand side is larger than zero. Then we can find a K > 0 such that θp(t) ≤ t−α for all t > K. From
first part of the lemma one has for t ≥ max(K,λ−1):

F (λ) ≤ e−tλ · θp(t) ≤ e−tλ · t−α ≤ e · λα

Then we have lim inft→∞
ln(F (λ))

lnλ ≥ α, and the equality is proved.

Remark 2.6. A sufficient condition for a manifold to be of analytic determinant class is α∆
p (M) > 0

for all 0 ≤ p ≤ dim(M). This fact follows readily from the proposition. For the case α∆
p (M) = ∞+,

we have θp(t) bounded by e−ϵt, and t−1e−tϵ is integrable; On the other hand when 0 < α∆
p (M) <∞+,

we then may assume that there is a ε > 0 such that α∆(M) > ε. Now from the second part of
Proposition 2.13 we see there is a K such that for all t > K,

θp(t)− F∆
p (0) ≤ t−ε (2.26)

Now
∫∞
ϵ t−1 · (θp(t) − F∆

p (0)) dt ≤
∫∞
ϵ t−1−ε dt < ∞ for some ϵ > 0. Hence we have in this case the

manifold is of analytic determinant class as well.

As a final remark we note the analytic determinant class (Definition 2.11) is indeed equivalent to
the determinant class (Definition 2.6), via the following lemma:

Lemma 2.14. For any F : [0,∞)→ [0,∞) finite spectral density function, we have:∫ a

ϵ+
ln(λ) dF = −

∫ a

ϵ
λ−1 · (F (λ)− F (0)) dλ+ ln(a) · (F (a)− F (0))− ln(ϵ) · (F (ϵ)− F (0)) (2.27)

Moreover, we have:
∫ a
ϵ+ ln(λ) dF > −∞ if and only if

∫ a
ϵ λ

−1 · (F (λ)− F (0)) dλ <∞, in which case:

lim
λ→∞

ln(λ) · (F (λ)− F (0)) = 0;∫ a

0+
ln(λ) dF = −

∫ a

0
λ−1 · (F (λ)− F (0)) dλ+ ln(a) · (F (a)− F (0))
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Proof. The first part comes directly from integration by parts. Assume either
∫ 1
0

1
λ · F (λ) dλ <∞ or∫ a

0+ ln(λ) dF >∞, then apply Monotone Convergence Theorem to get:∫ a

0+
ln(λ) dF ≥ −

∫ a

0
λ−1 · (F (λ)− F (0)) dλ

To see the other direction, we assume
∫ 1
0+ ln(λ) dF > −∞. Suppose to the contrary

lim
λ→∞

ln(λ)(F (λ)− F (0)) ̸= 0 (2.28)

Then we can find C < 0 with a sequence of 1 > λ1 > · · · → 0 such that: ln(λi)(F (λi) − F (0)) ≤ C.
Since F (λi) → F (0) as i → ∞, we may then assume, by possibly passing to a subsequence, that
F (λi+1)− F (0) ≤ 1/2(F (λi)− F (0)).

Consequently for any n ∈ N and any λ ∈ (0, 1), one has ln(λ) ≤
∑n

i=1 ln(λi) · χ(λi,λi+1](λ) holds,
then use this inequality to derive

∫ 1
0+ ln(F ) dF ≤ n · C2 . Now since C is arbitrarily chosen, we have∫ 1

0+ ln(F ) dF = −∞.

Lemma 2.15. Suppose that θF (t) <∞ for all t > 0. Then:∫ 1

0+
ln(λ) dF (λ) > −∞ ⇐⇒

∫ ∞

1
t−1 · (θF (t)− F (0)) <∞ (2.29)

Proof. Again it suffices to assume without loss of generality that F (0) = 0. Now 2.18 implies:∫ ∞

1
t−1 · θF (t) dt =

∫ ∞

1

(∫ ∞

0
e−tλ · F (λ) dλ

)
dt

Now by the assumption θF (t) is finite for all t and Lemma 2.12, we have F (λ) ≤ C(1) · eλ for all λ, so
indeed

∫∞
1

( ∫∞
1 e−tλ · F (λ) dλ

)
dt <∞, and it suffices to prove the rest part is finite:

∫ ∞

1

(∫ 1

0
e−tλ · F (λ) dλ

)
dt = lim

K→∞

∫ K

1

(∫ 1

0
e−tλ · F (λ) dλ

)
dt

= lim
K→∞

∫ K

1

(
d

dt

∫ 1

0

e−tλ

−λ
· F (λ) dλ

)
dt

= lim
K→∞

(∫ 1

0

e−Kλ

−λ
· F (λ) dλ

)
−
∫ 1

0

e−λ

−λ
· F (λ) dλ

=

∫ 1

0

e−λ

λ
· F (λ) dλ

where the first equality follows from Monotone Convergence Theorem, and the third from Dominated
Convergence Theorem. Now the last term is bounded by:∫ 1

0

e−1

λ
· F (λ) dλ ≤

∫ 1

0

e−λ

λ
· F (λ) dλ ≤

∫ 1

0

1

λ
· F (λ) dλ

Hence
∫∞
1 t−1 · θF (t) dt < ∞ if and only if

∫ 1
0

1
λ · F (λ) dλ < ∞. Now the lemma follows from

Lemma 2.14.

We are now prepared to define the analytic L2-torsion of M :
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Definition 2.16. If M is of analytic determinant class, we then define the analytic L2-torsion of
M to be:

ρ(2)an (M) :=
1

2
·
∑
p≥0

(−1)p · p ·

(
d

ds

1

Γ(s)

∫ ϵ

0
ts−1 ·

(
θp(t)− b(2)p (M)

)
dt
∣∣∣
s=0

+

∫ ∞

ϵ
t−1 ·

(
θp(t)− b(2)p (M)

)
dt

) (2.30)

Remark 2.7. One should note 1
Γ(s)

∫ ϵ
0 t

s−1 ·
(
θp(t)− b(2)p (M)

)
dt
∣∣∣
s=0

is holomorphic on {s ∈ C |
Re(s) > dim(M)/2} and it admits meromorphic extension to C with no poles on 0. This can be
proved by comparing the small T behaviour of von Neumann trace of heat kernel of M and the
ordinary trace of heat kernel of G\M , and then by appealing to the classical theory of extension of
Zeta function. For the details, refer to [L+92, Lemma 3].

Remark 2.8. It may seems 2.30 depends on the choice of ϵ. But in fact the value is independent of
ϵ. To see so, choose δ ≥ ϵ > 0, and abbreviate θ⊥p (t) = θp(t)− b(2)p (M):

d

ds

1

Γ(s)

∫ δ

ϵ
ts−1 · θ⊥p (t) dt

∣∣∣
s=0

=
d

ds

s

Γ(s+ 1)

∫ δ

ϵ
ts−1 · θ⊥p (t) dt

∣∣∣
s=0

=
d

ds
s
∣∣∣
s=0
· 1

Γ(s+ 1)

∫ δ

ϵ
ts−1 · θ⊥p (t) dt

∣∣∣
s=0

+ 0

=

∫ δ

ϵ
t−1 · θ⊥p (t) dt

since Γ(1) = 0! = 1.

2.4 Topological L2-Invariants: A Concise Introduction

For the integrity of discussion of the upcoming session we will briefly discuss the topological notions
here, whichever we deem as indispensable. Many interesting properties and ramifications of the
topological aspects of L2-invariants are omitted here. For an encyclopedic view the reader is referred
to [Lüc13].

We begin with the general discussion of what a L2-(co)homology is. Throughout this section X
will be a G-CW complex of finite type, unless otherwise stated.

Definition 2.17. Define the cellular L2-chain complex and the cellular L2-cochain complex
of a free G-CW complex X to be:

C
(2)
∗ (X) := ℓ2(G)⊗ZG C∗(X)

C∗
(2)(X) := HomZG(C∗(X), ℓ2(G))

where C∗(X) is the cellular ZG-chain complex, with d∗(2) and d(2)∗ are the map induced by differential
and the L2-(co)chain level.

Now since X is of finite type, we can then fix a finite G-equivariant cellular basis for Cn(X), from
which we obtain explicit G-isometric isomorphisms:

C(2)
n (X) ∼= Cn(2)(X) ∼=

k⊕
i=1

ℓ2(G) ∼= Ck ⊗C ℓ
2(G) (2.31)
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which indeed gives a structure of finitely generated Hilbert N (G)-module structure on both L2-
(co)chain complexes. One can also readily check dp(2) and d

(2)
p are G-equivariant.

To see d∗(2) and d(2)∗ indeed give morphisms between Hilbert N (G)-modules it suffices to verify the
boundedness. First note

⊕k
i=1 ℓ

2(G) ∼= Cn⊗ ℓ2(G) is furnished with the tensor product norm. This is
resolved more generally by the following lemma:

Lemma 2.18. Let ϕ : (CG)n → (CG)m be a morphism of CG-modules. Then the induced operator:

ϕ̃ := ϕ⊗CG ℓ
2(G) : (ℓ2(G))n → (ℓ2(G))m

is a bounded operator.

Proof. Write ϕ as a m × n-matrix [ϕij ] with ϕij =
∑

g∈G cij(g)g, where cij(g) ∈ C. Consider the ℓ1-
norm of ϕ in the sense of Remark 1.1, i.e.: ∥ϕij∥ℓ1 =

∑
g∈G |cij(g)| and then for (f1, · · · fn) ∈ (ℓ2(G))n,

by Cauchy-Schwarz inequality, we have:

∥ϕ̃(f1, · · · , fn)∥2ℓ2 =
∑
j

∥
∑
i

fiϕij∥2ℓ2 ≤
∑
i,j

∥ϕij∥2ℓ1∥fi∥
2
ℓ2 ≤ (

∑
i,j

∥ϕij∥2ℓ1)∥(f1, · · · , fn)∥
2
ℓ2

Hence ϕ̃ is a bounded operator.

Remark 2.9. Analogous to Remark 1.1 we can also identify C
(2)
n (X) with the Hilbert space of

summable chains:
{
∑
σ∈In

f(σ)σ | f(σ) ∈ C,
∑
σ∈In

|f(σ)|2 <∞} (2.32)

where {σ}σ∈In form an orthonormal basis with In the set of n-cell of X. Similarly, we can take:

Cn(2)(X) = {ϕ : Ci(X)→ C |
∑
σ∈In

|ϕ(σ)|2 <∞} (2.33)

From this we see Cn(2)(X) = Homcont(C
(2)
n (X),C). Now from the Hilbert space structure of C(2)

n (X)

and Riesz representation theorem [Con13, Chapter I, Theorem 3.4], we have the duality:

Λ : C(2)
n (X)→ Cn(2)(X) h 7→ ⟨h,−⟩ (2.34)

where ⟨−,−⟩ is the inner product of C(2)
n (X). Hence we see d

(2)
p is the dual map of dp+1

(2) in the
topological sense. In fact, they are also adjoint of each others as bounded operators, if we identify
C

(2)
∗ (X) with C∗

(2)(X) using the isomorphism Λ: Given x ∈ C(2)
p , y ∈ C(2)

p−1, we have:

Λ((d(2)p )∗(y))(x) = ⟨(d(2)p )∗(y), x⟩ = ⟨y, (d(2)p )(x)⟩ = Λ(y)(d(2)p (x)) = (dp−1
(2) (Λ(y))(x) (2.35)

where d∗ is the adjoint operator of d. Hence from now onwards when speaking of Hilbert chain
complexes we do not differ the dual of differential map from its adjoint.

When passing from L2-cochain complex to homology, one should caution that the image of a
bounded linear operator between Hilbert spaces may not be a closed subspace, thus when passing to
homology, as did in singular chain complex the Hilbert space may be sacrificed. To remedy this, we
define the quotient by the closure of its image:

Definition 2.19. Given X a free G-CW complex of finite type. Define its (reduced) p-th L2-
(co)homology to be:

H(2)
p (X;N (G)) := ker(d(2)p : C(2)

p → C
(2)
p−1)/Im(d

(2)
p+1 : C

(2)
p+1 → C

(2)
p )

Hp
(2)(X;N (G)) := ker(dp(2) : C

p
(2) → Cp+1

(2) )/Im(dp−1
(2) : Cp−1

(2) → Cp(2))
(2.36)
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Moreover, we define the p-th Laplace operator associated to the space X to be:

∆p := d
(2)
p+1(d

(2)
p+1)

∗ + (d(2)p )∗d(2)p : C(2)
p → C(2)

p (2.37)

with d∗ the adjoint of d as before.

One ought to expect from Remark 2.9 that the L2-homology should be G-isometrically isomorphic
to the L2-cohomology in a canonical sense. It become clearer by the following lemma:

Lemma 2.20. The L2-chain complex admits an orthogonal decomposition of Hilbert N (G)-modules:

C(2)
p (X) = ker(∆p)⊕ Im(d

(2)
p+1)⊕ Im((d

(2)
p )∗) (2.38)

with the natural map:

ker(d(2)p ) ∩ ker((d
(2)
p+1)

∗) = ker(∆p)→ H(2)
p (X;N (G)) (2.39)

is an isometric G-isomorphism.

Proof. First note H(2)
p (X) is isometrically G-isomorphic to ker(d

(2)
p ) ∩ Im(d

(2)
p+1)

⊥ and ker(d
(2)
p )⊥ =

Im((d
(2)
p )∗) and Im(d

(2)
p+1)

⊥ = ker((d
(2)
p+1)

∗), whence they constitute an orthogonal decomposition of
C(2)(X). It remains to show the first equality. This follows directly from the following equality:

⟨∆p(v), v⟩ = ∥d(2)p (v)∥2 + ∥(d(2)p+1)
∗(v)∥2

Now the duality Λ∗ in Remark 2.9 gives the desired isomorphism between H∗
(2)(X) and H

(2)
∗ (X)

since the p-th Laplace operator in L2-cochain complex is the same with that in L2-chain complex. So
we are entitled to define p-th Betti number of X without specifying the cohomology or homology:

Definition 2.21. Let X be a free G-CW complex of finite type. Define its topological L2-Betti
number as b(2)p (X;N (G)) := dimN (G)(C

(2)
∗ (X)).

We now set off to define the topological version of Novikov-Shubin invariants from Definition 2.1
and Definition 2.4:

Definition 2.22. Let X be a free G-CW complex of finite type. Define its topological p-th spectral
density function of dp and of ∆p respectively as:

Fp(X) ≡ Fp(C(2)
∗ (X)) := F

(
dp|Im(d

(2)
p+1)

⊥ : Im(d
(2)
p+1)

⊥ → Cp−1

)
F∆
p (X) := F (∆p) (2.40)

Respectively we define the p-th Novikov-Shubin invariant of X to be:

αp(X) := α(Fp(X)) α∆
p (X) := α(∆p) (2.41)

Remark 2.10. Note for general Hilbert chain complex the Novikov-Shubin invariant can be defined in
the same fashion, but one requires every differential map to be Fredholm in the sense of Definition 2.4.
However, since in our case every C

(2)
p (X) have finite von-Neumann dimension, we omit the part on

Fredholmness.

Lastly we define the topological L2-torsion. This has imposed with a stronger restriction to the
space than L2-Betti numbers and Novikov-Shubin invariant, that is, we require the G-CW complex
further to be finite, i.e., X is of finite type and C

(2)
p (X) = 0 for all p ≥ N for some positive integer

N . Moreover, we requires X to be of det-L2-acyclic, in the following sense:
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Definition 2.23. A finite G-CW complex is said to be det-L2-acyclic if each of its differential map
d
(2)
p is of determinant class, and the L2-chain complex is weakly acyclic, i.e., H∗

p (X) vanishes for all p.

Definition 2.24. If X is a det-L2-acyclic finite free G-CW complex , we define its cellular L2-torsion
to be:

ρ(2)(X) := −
∑
p∈Z

(−1)p · ln(det(d(2)p )) (2.42)

We will end this section by citing a few theorems with regard to Hilbert N (G)-chain complexes.
These shall be of use in our later discussion. Due to limit in volume we omit some of the proofs here,
all of which could be retrieved from [Lüc13, Chapter I & II].

First Recall a Hilbert N (G)-chain complex is Fredholm if all its differentials are Fredholm in the
sense of Definition 2.4. We say a sequence C∗ of Hilbert spaces is weakly exact if ker(dp : Cp →
Cp−1) = Im(dp+1 : Cp+1 → Cp).

Theorem 2.25. If the following is an exact sequence of Fredholm Hilbert N (G)-chain complexes:

0 C∗ D∗ E∗ 0
i∗ p∗

Then it induces a weakly exact long homology sequence:

· · · H
(2)
n+1(E∗) H

(2)
n (C∗) H

(2)
n (D∗) H

(2)
n (E∗) · · ·

H
(2)
n+1(p∗) ∂n+1 H

(2)
n (i∗) H

(2)
n (p∗) ∂n (2.43)

Proof. See [Lüc13, Theorem 1.21]. The proof resembles that of ordinary long homology exact sequence,
except that in order to prove the weak-exactness, we prove certain space V vanishes using the injectivity
of dimension function (c.f. Remark 1.4). To prove that we use the ‘outer regularity’ of dimension
function and construct a sequence of spaces which upper-bounds V and converge to 0 via spectral
projections.

Next we prove that the Novikov-Shubin invariant as an invariance of chain homotopy equivalence:

Proposition 2.26. If f : C∗ → D∗ is a chain homotopy equivalence of Hilbert N (G)-chain complexes,
the for all p ∈ Z we have:

Fp(C∗) ≃ Fp(D∗)

In particular C∗ is Fredholm if and only if D∗ is Fredholm. In this case,

αp(C∗) = αp(D∗)

Proof. First recall Remark 1.2 that every exact sequence of Hilbert N (G)-module splits. We want to
extend it to the direct sum to a chain level:

Given a short exact sequence of chain complexes of Hilbert N (G)-modules:

0 C∗ D∗ E∗ 0
j∗ q∗ (2.44)

with E∗ contractible. Then choose a chain contraction ϵ∗ for E∗ and for each p a morphism tp : Ep →
Dp such that qp ◦ tp = idE∗ , we put:

sp = dp+1 ◦ tp+1 ◦ ϵp + tp ◦ ϵp−1 ◦ ep

and this s∗ defines a left split, i.e., q∗ ◦ s∗ = idC∗ . Hence j∗ ⊕ s∗ gives the desired chain isomorphism.
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Apply this construction to the following short exact sequences:

0 C∗ cyl∗(f∗) cone∗(f∗) 0

0 D∗ cyl∗(f∗) cone∗(C∗) 0

and we see C∗ ⊕ cone∗(f∗) is chain isomorphic to D∗ ⊕ cone∗(C∗).
Now we claim Fp(C∗) ≃ Fp(D∗) for all p. To see this, we note for general contractible E∗ with

chain contraction ϵ∗, first note ep and ϵp induces invertible morphisms between Im(ep+1)
⊥ and Ep−1.

Hence we see αp(E∗) =∞+ and Now we have:

Fp(C∗) + Fp(cone∗(f∗)) = Fp(C∗ ⊕ cone∗(f∗)) = Fp(D∗ ⊕ cone∗(C∗)) = Fp(D∗) + Fp(cone∗(C∗))

with the second component of both sides remain constant in a neighbourhood of 0 by the general
discussion above. Hence we have Fp(C∗) ≃ Fp(D∗) and the second statement follows from Lemma 2.5.

The case of L2-torsion of a chain complex is more subtle, and since it is not weak homotopy
invariance, as was the other two. Indeed the difference is detected by the L2-torsion of map between
L2-cohomology, as revealed by the following theorem:

Theorem 2.27. Let C∗ and D∗ be dim-finite Hilbert N (G)-chain complexes of determinant class and
f∗ : C∗ → D∗ be a weak homotopy equivalence. Then f∗ is of determinant class if and only if H(2)

p (f∗)
is of determinant class for all p ∈ Z, and:

ρ(2)(cone∗(f∗)) = ρ(2)(D∗)− ρ(2)(C∗) +
∑
p∈Z

(−1)p · ln(det(H(2)
p (f∗))) (2.45)

Proof. See [Lüc13, Theorem 3.35(5)] for related statements and [Lüc13, Section 3.3.3] for a proof.

Remark 2.11. The reader can easily observe that when we replace weak homology equivalence by
homology equivalence, then the assumption in f∗ being of determinant class can be dropped. This
is because H(2)

p (f∗) is then isomorphisms between Hilbert spaces and is hence bounded from below.
Hence by a common argument we see the spectrum is disjoint from 0, and is hence of determinant
class.

We also show here the L2-torsion of a contractible space is independent of the choice of contraction
one choose:

Lemma 2.28. Let C∗ be a contractible dim-finite Hilbert N (G)-chain complex of determinant class.
Let γ∗ and δ∗ be two chain contractions. Then the maps (c+γ)odd and (c+γ)even are weak isomorphisms
of determinant class with:

ln(det((c+ γ)odd)) = − ln(det((c+ δ)even)) ρ(2)(C∗) = ln(det(c+ γ)odd) (2.46)

Proof. First note by the fact that γ∗ is a contraction, we have: (c+ γ)even ◦ (c+ γ)odd = ceven ◦ codd +
ceven ◦ γodd + γeven ◦ codd + γeven ◦ γodd = 0 + idCodd

+(γ2)odd. which takes the following form:

. . . ...
...

... . . .
· · · 1 0 0 · · ·
· · · γ2 1 0 · · ·
· · · 0 γ2 1 · · ·
. . . ...

...
... . . .

 : Codd → Codd
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is hence an isomorphism. Consequently c+ γ is isomorphism for both even and odd part. Moreover,
by Lemma 2.8 we note all three maps are of determinant class. Next setting Θ∗ = idC∗ +(δ ◦ γ)∗,
observe the following composition:

Codd Ceven Ceven Codd
(c+γ)odd Θ (c+δ)even

being a lower triangular matrix with diagonal being identity. Hence we have from Lemma 2.8 the first
equality.

To prove the second equality. We first make the observation that when C∗ is contractible, then
∆p is invertible for all p. To see this, first note since H(2)

p (C∗) vanishes, we have by Lemma 2.20
that ker(∆p) = 0 for all p. In particular, ∆p is injective for all p. Hence the chain contraction shows
Im(dp+1) = ker(dp) which is a closed subspace, hence dp has closed image for all p. Together this
implies ∆p is invertible, in particular, it is of determinant class in our case.

Next we need to modify ρ(2) in the forms of ∆p. We claim the following identity:

ρ(2)(C∗) = −
1

2

∑
p∈Z

(−1)p · p · ln(det(∆p)) (2.47)

To prove the claim, first note with respect to the orthogonal decomposition we can write

∆p = 0⊕ ((c⊥p )
∗c⊥p )⊕ ((c⊥p+1)

∗c⊥p+1)

Now by Lemma 2.8, we have:

det(∆p) = det(0) · det((c⊥p )∗c⊥p ) · det(((c⊥p+1)
∗c⊥p+1)) = det(cp)

2 · det(cp+1)
2

Now the claim readily follows by the applying ln to each component.
Lastly we note for all k ∈ Z, ∆k

p ◦ cp+1 = cp+1 ◦∆k
p+1, and ∆k

p ◦ (∆−1
p ◦ c∗p) = (∆−1

p ◦ c∗p) ◦∆k
p−1.

To take degree into consideration, and denote
⊕

p odd(∆p)
p and

⊕
p even(∆p)

p to be ∆odd and ∆even

respectively, and:

∆odd ◦ (c+∆−1 ◦ c∗)even = (c∗ +∆−1 ◦ c)even ◦∆even = ((c+∆−1 ◦ c∗)odd)∗ ◦∆even

So now via 2.47 we write 2 · ρ(2)(C∗) =
∑

p odd ln(det(∆
p
p)) −

∑
p even ln(det(∆

p
p)) = ln(det(∆odd)) −

ln(det(∆even)), then use the equality above, the first formula of this lemma, and Lemma 2.8 one yield:

ln(det((c+∆−1 ◦ c∗)odd)) = − ln(det((c+∆−1 ◦ c∗)even))
= − ln(det(∆odd))− ln(det((c+∆−1 ◦ c∗)even)) + ln(det(∆odd))

= − ln(det(((c+∆−1 ◦ c∗)odd)∗))− ln(det(∆even)) + ln(det(∆odd))

= − ln(det((c+∆−1 ◦ c∗)odd)) + 2ρ(2)(C∗)

Hence we have the desired formula.

Remark 2.12. Note Lemma 2.28 can be extended to more general cases of weak-acyclic dim-finite
Hilbert N (G)-modules. In such case one need to replace chain contractions by weak chain contraction,
while the general idea can be carried forth with a bit extra work. For details, see [Lüc13, Section 3.3.2].

2.5 Equivalence between Topological and Analytic L2-Invariants

This section is offered as a gargantuan black-box in which we quote all relative theorems that bridge the
analytic L2-invariants with their topological counterparts. Before stating these theorems, we still need
to transfer the above settings to the case when M = X being a cocompact free proper G-manifold
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without boundary and with G-invariant Riemannian metric. This entails an equivariant smooth
triangulation, hence the L2-invariants may depend on the choice of triangulation and may subject to
the perturbation of G-homotopy. Fortunately L2-Betti numbers and Novikov-Shubin invariants are
G-homotopy invariances (In fact they are even invariants of weak homotopy equivalences):

Theorem 2.29 (Weak Homotopy Invariance). Let f : X → Y be a G-equivariant map of free G-
CW complexes of finite type. If the map induced on homology with complex coefficients f∗ : Hp(X;C)→
Hp(Y ;C) is bijective p ≤ d− 1, then for p ≤ d:

Fp(X) ≃ Fp(Y ) αp(X) = αp(Y ) (2.48)

Moreover, if fp is surjective for p = d, then:

∀p < d, b(2)p (X) = b(2)p (Y ); b
(2)
d (X) ≥ b(2)d (Y ) (2.49)

In particular, if f is a weak homotopy equivalence, then for all p ≥ 0:

b(2)p (X) = b(2)p (Y ) Fp(X) ≃ Fp(Y ) αp(X) = αp(Y ) (2.50)

Proof. First note we may assume f to be cellular by Theorem 1.16. Recall the exact sequence 1.21,
which we denote C∗(X), cyl∗(C∗(f ;C)) and cone∗(C∗(f ;C)) as C∗, D∗, E∗ respectively.

To prove the statement regarding Betti numbers, we see first E∗ is free (whence projective) CG-
chain complex and the homology with complex coefficients Hp(E∗;C) vanishes for p ≤ d, it is CG-chain
homotopy equivalent to a free CG-chain complex of finite type E′

∗ with E′
p is trivial for p ≤ d (See

[Bro12, Chapter I, Corollary 7.7] for proof). Consequently by tensoring with ℓ2(G), we have the E(2)
∗

is chain homotopy equivalent to a Hilbert N (G)-chain complex E′(2)
∗ with H(2)

p (E
′(2)
∗ ) = 0 for all p ≤ d.

Now the part regarding Betti number follows from Theorem 2.25.
Next we prove the part regarding Novikov-Shubin invariants. Note the canonical inclusion C∗(Y )→

cyl∗(C∗(f ;C)) is a CG-chain homotopy equivalence, and hence induces a chain homotopy equivalence
of Hilbert N (G)-chain complexes of finite type C(2)

∗ (Y ) → ℓ2(G) ⊗CG D∗. Hence in view of Proposi-
tion 2.26 it suffices to establish the following equivalence:

Fp(ℓ
2 ⊗CG C∗) ≃ Fp(ℓ2(G)⊗CG D∗) ∀p ≤ d

where p < d-cases are straight forward. So it suffices to build the case with p = d. Since Hp(E∗) = 0
for p ≤ d− 1, we may consider the following truncated CG-exact sequence:

0→ P → Ed → Ed−1 → · · · → E0 → 0

with P := ker(ed : Ed → Ed−1). Since each Ei are finitely generated free CG-module, we claim
P is a direct summand in Ed, and we may find finitely generated free CG-module F, F ′ such that
F = P ⊕ F ′.2

Now denote d[W ]∗to be the CG-chain complex concentrated in dimension d with W . By truncating
everything in dimension great or equal to d+1, we yield a commutative diagram of CG-chain complexes
with exact rows:

0 C∗ D∗ ⊕ d[F ′]∗ E∗ ⊕ d[F ′]∗ 0

0 C∗ D′ d[F ]∗ 0

i∗ p∗⊕idd[F ′]∗

i′∗

j∗

p′∗

k∗ (2.51)

2To see the claim is true, first note P is a projective CG-module. Next by an easy induction from right, we see one
can indeed make both F and F ′ finitely generated free.
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where the vertical maps are inclusions, and D′
∗ is the submodule of D∗⊕d[F ′]∗ that makes the diagram

commutes. Now since idC∗ and k∗ are CG-homotopy equivalences, so is j∗ a CG-homotopy equivalence
as well. Hence for p ≤ d, we have:

Fp(ℓ
2(G)⊗CG D

′
∗) ≃ Fp(ℓ2(G)⊗CG (D∗ ⊕ d[F ′]∗)) ≃ Fp(ℓ2(G)⊗CG D∗)

Hence C∗ ⊕ d[F ]∗ ∼= D′
∗. Next we need to identify two chain complexes via a CG-chain isomorphism

g∗ and a CG-map u : F → Cd−1 such that the following diagram commutes with vertical maps are
CG-module isomorphisms:

Cd ⊕ F Cd−1 Cd−2 · · ·

D′
d D′

d−1 D′
d−2 · · ·

gd

cd⊕u

i′d−1

cd−1

i′d−2

cd−2

d′d d′d−1 d′d−2

(2.52)

that is, gp = i′p for p < d. Now cd−1 ◦ u = 0 by the exactness of upper chain complex, so by the
projectivity of F , we can solve the extension problem by a CG-map v : F → Cd such that the follow
diagram commutes:

F

Cd Cd−1 Cd−2

v
u

0

cd cd−1

(2.53)

passing to Hilbert N (G)-modules, we have the following map:

(Cd ⊕ F )(2) C
(2)
d C

(2)
d−1

(cd⊕u)(2)

(idCd
⊕v)(2) c

(2)
d (2.54)

Now from 2.6 we have:

F ((cd ⊕ u)(2)) ≃ F (c
(2)
d ◦ (idCd

⊕v)(2)) ≃ F (c(2)d )

so the statement regarding spectral density function is proved. Now the invariance of Novikov-Shubin
invariant follows readily from Lemma 2.5.

Lastly we want to investigate the L2-torsion, which we have forewarned is not a G-homotopy invari-
ance. Instead it will produce a residual constant in R from Whitehead torsion (c.f. Definition 1.17):

Definition 2.30. Given any discrete group G, we define the following map:

ΦG : Wh(G)→ R

by sending an element A ∈ Mn(ZG) to
∫∞
0+ ln(λ) dF (RA) with RA : ℓ2(G)n → ℓ2(G)n the right

multiplication by A. Note this map is well-defined on Wh(G) by the properties of Kadison-Fuglede
determinant listed in Lemma 2.7 and Lemma 2.8.

Theorem 2.31. Let f : X → Y be a G-homotopy equivalence of finite free G-CW complexes. Suppose
X or Y is det-L2-acyclic, then so is the other, and:

ρ(2)(Y )− ρ(2)(X) = ΦG(τ(f)) (2.55)

where τ(f) is Whitehead torsion we defined in Definition 1.17
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Proof. The det-L2-acyclicity is a direct consequence of Theorem 2.27. Now use the formula in Theo-
rem 2.27, we note:

ρ(2)(cone∗(f∗)) = ρ(2)(C
(2)
∗ (Y ))− ρ(2)(C(2)

∗ (X)) +
∑
p∈Z

(−1)p · ln(det(H(2)
p (f∗)))

where left hand side is by Lemma 2.28 is ln(det(c + γ)odd) for some chain contraction γ∗. Now by
choose the representation of τ(f) ∈Wh(G) to be (c+γ)odd again, we see the proof completes once we
show that

∑
p∈Z(−1)p ln(detH

(2)
p (f∗)) = 0, but this follows from the weak-acyclicity of C∗ or D∗.

Now we are entitled to define all topological L2-invariants on manifolds.

Definition 2.32. An G-equivariant smooth triangulation K of M consists of a simplicial complex
K with simplicial G-action such that for each open simplex σ and g ∈ G with gσ∩σ ̸= ∅, then g induces
identity on σ. Take |K| as the geometric realization, then there is a G-homeomorphism f : |K| →M .
We then define the topological L2-Betti number and Novikov-Shubin invariant of a cocompact
free proper G-manifold M to be that of any of its equivariant triangulation.

Now The core of relating L2-integrable harmonic smooth p-forms 1.18 with the topological L2-
cohomology is the following L2-version of Hodge-de Rham Theorem, due to Dodziuk [Dod77]:

Theorem 2.33 (L2-Hodge-de Rham Theorem). Let M be a cocompact free proper G-manifold
with G-invariant Riemannian metric and let K be an equivariant smooth triangulation of M . Suppose
that M has no boundary. Then the integration defines an isomorphism of finitely generated Hilbert
N (G)-modules:

Hp(2)(M)
∼=−→ Hp

(2)(K)

As a immediate corollary we see the cellular L2-Betti number in Definition 2.21 equals to the
analytic L2-Betti number in Definition 2.9 via the following simple computation:

dimN (G)(H
p
(2)(M)) = dimN (G)(ker((∆p)min)) = F ((∆p)min)(0) = lim

t→∞
θp(M)(t)

where the last equality is direct from Remark 2.4 and Dominated Convergence Theorem.
Next with regard to the Novikov-Shubin invariants, we have the following result due to Efremov

[Efr91]:

Theorem 2.34. Let M be a cocompact free proper G-manifold with G-invariant Riemannian metric
and let K be an equivariant smooth triangulation of M . Suppose that M has no boundary. Then
for the cellular spectral density function Fp(K) in Definition 2.22 and the analytic spectral density
function Fp(M) in Definition 2.10, we have for each dimension p,

Fp(K) ≃ Fp(M)

Consequently, we have αp(M) = αp(K).

Lastly we define the topological L2-torsion. First note in [Ill00, Theorem III] Illman shows that
for general Lie group G, each cocompact free proper G-manifold M has a unique simple G-homotopy
type, that is for any two equivariant smooth triangulation f : K → M and g : L → M , we have the
Whitehead torsion of g−1 ◦ f : K → L to be a simple G-homotopy equivalence. Hence in the light of
Theorem 2.31 the L2-torsion is well-defined, once we have chosen a smooth triangulation.

Nonetheless in the assumption of Theorem 2.31 one requires the weak-acyclicity of the simplicial
complex, which is a rather strong assumption for manifolds. Nonetheless if one examine the proof
of Theorem 2.33, there is an isomorphism ApK : Hp(2)(M) → Hp

(2)(K) (see [Lüc13, Lemma 1.76ff]
for definition), and if we take this into consideration and use Theorem 2.27, one might remove this
assumption:
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Definition 2.35. Let M be a cocompact free proper G-manifold without boundary and with a G-
invariant Riemannian metric. Let f : K → M be an equivariant smooth triangulation. We define M
is of determinant class if any of the equivariant smooth triangulation (hence all) is of determinant
class. Hence ρ(2) := ρ(2)(C

(2)
∗ (K)) is defined. Let ApK : Hp(2)(M) → Hp

(2)(K) be the L2-Hodge de
Rham isomorphism, we then define topological L2-torsion of M to be:

ρ
(2)
top(M) = ρ(2)(K)−

∑
p≥0

(−1)p · ln

(
det
(
ApK : Hp(2)(M)→ Hp

(2)(K)
))

Next we want to check the definition is independent of choice of equivariant smooth triangulations.
Choose f : K →M and g : L→M to be two such triangulations, we have ApK ◦H

p
(2)(g

−1 ◦ f) = ApL.

Now by Lemma 2.8, we have ln(det(ApK)) = ln(det(ApL)) + ln

(
det(Hp

(2)(g
−1 ◦ f))

)
, and consequently

by Theorem 2.27 and the fact g−1 ◦ f is a simple G-homotopy equivalence, one has:

ρ(2)(L)− ρ(2)(K) = −
∑
p≥0

(−1)p · ln

(
det(H(2)

p (g−1 ◦ f))

)

Next observe from the discussion after Remark 1.1 that the map between finitely generated Hilbert
cochain complexes can be identified with that adjoint between their respective Hilbert chain complexes.

Hence we have ln

(
det(Hp

(2)(g
−1 ◦ f))

)
= ln

(
det(H

(2)
p (g−1 ◦ f))

)
. Summing up all this results, we

have:
ρ(2)(L)− ρ(2)(K) =

∑
p≥0

(−1)p
(
ln(det(ApL))− ln(det(Apk))

)
Hence we have proved the topological L2-torsion defined above is well-defined. Note ρ

(2)
top(M) is

dependent on the choice of Riemannian metric, as captured by the Hilbert N (G)-structure ofHp(2)(M).

Lastly the analytic L2-torsion and the topological L2-torsion agrees by the following deep result
due to Burghelea, Friedlander, Kappeler and McDonald [BKMF96]:

Theorem 2.36. Let M be a cocompact free proper G-manifold without boundary and with a G-
invariant Riemannian metric. Then M is of analytic determinant class in the sense of Definition 2.11
if and only if it is of determinant class in the sense of Definition 2.35. In such case, the analytic L2-
torsion ρ

(2)
an (M) as defined in Equation (2.30) is the same as the topological L2-torsion ρ

(2)
top(M) as

defined in Definition 2.35.

Having established the topological L2-invariants of manifolds, we conclude this section with some
immediate consequences:

Theorem 2.37 (Poincaré Duality). Let M be a cocompact free proper G-manifold without boundary
of dimension n which is orientable. Then:

b(2)p (M) = b
(2)
n−p(M) Fp(M) ≃ Fn+1−p(M) αp(M) = αn+1−p(M) (2.56)

Furthermore if n is even, then ρ(2)(M) = 0.

Proof. First note there is a subgroup G0 of G (of index 1 or 2) which acts orientation preserving on
M . By applying the restriction functor, we have b(2)p (M ;N (G0)) = [G : G0]b

(2)(M ;N (G)). So we
can assume without loss of generality that G\M is orientable. Now [WR99, Theorem 2.1] gives the
Poincaré ZG-chain homotopy equivalence:

⌢ [G\M ] : Cn−∗(M)→ C∗(M) (2.57)
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which, after applying ⊗ZGℓ
2(G), induces a homotopy equivalence of finitely generated Hilbert N (G)-

chain complexes Cn−∗
(2) (M)→ C(2)(M). Now the claim of L2-Betti number follows from Theorem 2.29

and the remark prior to Definition 2.21. The statement of Novikov-Shubin invariants now follow suit
again by Theorem 2.29 and Fp(C∗) = Fp((C∗)

∗).
To preserve the statement of L2-torsion,first choose a smooth triangulation f : K → M , and

let [G\K] := ((G\f−1)∗ : Hn(G\M) → Hn(G\K))([G\M ]). Now [WR99, Theorem 2.1] also asserts
τ(⌢ [G\K]) = 0 with respect the cellular basis. In particular, together with the isomorphism Λ we
construct in Remark 2.9 it induces an homotopy equivalence fo finite Hilbert N (G)-chain complexes:

g∗ : ℓ
2(G)⊗ZG C

n−∗(K)→ C
(2)
∗ (K)

with ρ(2)(cone∗(g∗)) = 0. Now by Theorem 2.27 we see:

ρ(2)(ℓ2(G)⊗ZG C
n−∗(K)) = ρ(2)(C

(2)
∗ (K)) (2.58)

Now apply the error term −
∑

p≥0(−1)p · ln

(
det
(
ApK : Hp(2)(M) → Hp

(2)(K)
))

in Definition 2.35 to

both sides, further note det(f) = det(f∗) and a shift in degree when dualizing the chain complex, we
have: ρ(2)(M) = (−1)n+1ρ(2)(M). In particular, when n is even, the L2-torsion vanishes and we have
finished the proof.

2.6 Proof of L2-Hodge de Rham Theorem

In this section we shall prove Theorem 2.33 and Theorem 2.34 in an unified approach. Proof of
Theorem 2.36 will require more technical tools and is way more complicated, for which reason we shall
omit here. We shall follow the notation of previous section.

The proof of L2-Hodge-de Rham Theorem will process very much like the compact case. The
general steps is as follows. First we begin with constructing appropriate L2-chain complexes on which
the differential maps are bounded operators. Between this chain complex and C∗

(2)(K) one then
construct inverse maps which induces bijective map on L2-cohomology. The later step takes some
step as our construction is not global as the compact case. We begin ourselves by understanding
harmonic p-forms as L2-cohomology.

First recall the Sobolev k-norm of p-forms,

∥ω∥k := ∥(1 + ∆p)
k/2ω∥L2 = ⟨ω, (1 + ∆p)

kω⟩L2 (2.59)

Consequently, we can define the k-th Sobolev spaces of p-forms on M as the completion of Ωpc(M)
with respect to ∥·∥. Now we see moreover it is by Lemma 1.7 an elliptic operator which admits unique
closed extension, whence we could identify it with the following space:

HkΩp(M) := {ω ∈ L2Ωp(M) | (1 + ∆p)
k/2ω ∈ L2Ωp(M)}

where (1 + ∆p)
k/2 is defined using functional calculus and (1 + ∆p)

kω is defined in the sense of
distribution. Note the G-action on M gives an N (G)-structure on L2Ωp(M). To see this, one choose
a fundamental domain F ⊂M of G, which gives the following isomorphism:

L2Ωp(M) ∼= ℓ2(G)⊗ L2Ωp(F) ∼= ℓ2(G)⊗ L2Ωp(G\M) (2.60)

whereG acts on ℓ2(G) via left-regular representation, and on L2Ωp(M) trivially. Consequently, we have
a HilbertN (G)-module structure on L2Ωp(M), and sinceG-action commutes with (1+∆p)

k, we deduce
HkΩp(M) are Hilbert N (G)-modules for all k, p ≥ 0. Now since dp is a linear differential operator of
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order 1 and hence can be extended to a bounded linear operator dp : Hk+1Ωp(M)→ HkΩp+1(M) for
all k, p ≥ 0. Consequently, we have the following Hilbert N (G)-cochain complex:

· · · H lΩ0(M) H l−1Ω1(M) · · · H l−nΩn(M) 0 · · ·d0 d2 dn−1

(2.61)

Moreover, since ∆p vanish on Hp(2)(M), we have canonical inclusion ι : Hp(2)(M) ↪→ H l−pΩ(M) for all
l ≥ p. The following lemma identified it with the cohomology:

Lemma 2.38. Let l ≥ dim(M). Then ι is a G-equivariant isometric embedding and induces a
G-equivariant isometric isomorphism:

Hp2(M) −→ Hp
(2)(H

l−∗Ω∗(M); dp) (2.62)

Proof. Let ω ∈ Hp(2)(M). One observe ∥ω∥k = ∥ω∥0 < ∞ for all k ≥ 0. Hence dω, δω, dδω, δdω ∈
L2(M). Also since M is complete Riemannian manifold, we can apply L2-Stokes theorem:

⟨ω, ω⟩L2 = ⟨(1 + ∆p)ω, ω⟩L2 = ∥ω∥2L2 + ∥dpω∥2L2 + ∥δpω∥2L2 (2.63)

forcing dω = δω = 0. Next let η ∈ H l−p+1Ωp−1(M), one has:

⟨ω, dp−1η⟩l−p = ⟨ω, (1 + ∆p)
l−pdl−pη⟩L2 = ⟨δpω, (1 + ∆p−1)

l−pη⟩L2 = 0

Hence Hp(2)(M) ⊥ Im(dp−1) and we have proved Hp2(M) ⊆ Hp
(2)(H

l−∗Ω∗(M); dp)

To prove the other side, let µ ∈ ker(dp). Then µ = ω + η ∈ Hp(2)(M) ⊕ (Hp(2)(M))⊥ker dp ⊆
H l−pΩ(M). Now for any ν ∈ Hp(2)(M) we get:

⟨(1 + ∆p)
l−p
2 η, ν⟩L2 = ⟨(1 + ∆p)

l−p
2 η, (1 + ∆p)

l−p
2 ν⟩L2 = ⟨η, ν⟩l−p = 0

Recall the decomposition in Lemma 2.20. We see (1+∆p)
l−p
2 η ∈ Im dp−1. But now observe (1+∆p)

k/2

defines an G-equivariant isometric isomorphism H lΩp(M) ∼= H l−kΩp(M).This can be observed by
applying functional calculus to its (unique) self-adjoint extension. Consequently, since dp−1∆p =
∆pd

p−1, we have from Spectral Theorem that dp−1 commutes with (1 + ∆p)
(p−l)/2 as well. Hence

η ∈ Im(dp−1) and the other side is proved.

On the other hand if we fix an equivariant smooth triangulationK ofM . Throughout the discussion
we shall not distinguish the simplex σ with its geometric realization |σ|. We have a cocompact G-CW
complex. recall in Remark 2.9 we have identified C∗

(2)(K) with ℓ2C∗(K). Choose ω ∈ HkΩp(M), we
see ω ∈ C1(M) by Sobolev embedding theorem. Hence we can integrate ω over any oriented p-simplex
of K, whence obtaining an element in ℓ2Cp(K). Hence we can choose a large enough l > 0, and define
the following map via integration:

A∗ : H l−∗Ω∗(M)→ C∗
(2)(K) (2.64)

Next we define the right inverse of A∗ as follows. Let {Uσ}σ∈S0(K) be the open covering given by open
stars of 0-simplices. Note g ·Uσ = Ugσ. Next choose a G-invariant partition of unity {eσ} subordinate
to Uσ, that is eσ ∈ C∞(M, [0, 1]) such that egσ ◦ Lg = eσ, and

∑
σ∈S0(K) eσ = 1.

Now given a p-simplex τ with vertices σ0, ·, σp. For the associated characteristic function χτ , we
define a p-form with support in the star of τ by:

W (χτ ) := p!

p∑
i=0

(−1)ieσid0eσ0 ∧ · · · ∧ d0eσ0i−1 ∧ d0eσ0i+1 ∧ · · · ∧ d0eσp
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By default we define W (eσ) = eσ. This now gives an cochain map of Hilbert N (G)-cochain complexes
W ∗ : C∗

(2)(K) → H l−∗Ω∗(M). The reader is readily to check A∗ ◦W ∗ = id, and both maps does not
depend on the choice of orientations of the simplices. In particular, we see at L2-cohomology level,

H∗
(2)(A

∗) : H∗
(2)(H

l−∗Ω∗(M))→ H∗
(2)(C

∗
(2)(K))

is surjective.
In order to prove H∗

(2)(A
∗) is injective, we cannot construct a homotopy between W ∗ ◦ A∗ and id

as we did in the compact case, since the construction on the quotients is not local, whence can not
be lifted to K and M directly. To remedy this we define a new W̃ ∗, which we replace the smooth
partition of unity eσ by the barycentric coordinate function eσ, we see the barycentric coordinate
function eσ’s are only non-smooth on the dim(M) − 1-skeleta. Hence the p-forms are defined in the
sense of distributions. We claim it is a continuous map and image are square integrable p-forms:

Lemma 2.39. Given an equivariant smooth triangulation K, the map

W̃ p
K : Cp(2)(K)→ L2Ωp(M)

is a bounded from below.

Proof. We first prove the map is well-defined i.e., W̃ ∗
K(Cp(2)(M)) ⊆ L2Ωp(M). Observe W̃ (χτ ) is

continuous in a distributional sense. To see so, given τ a p-dimensional face on both dim(M)-simplices
σ0 and σ1, then for inclusion ik : τ → σk for k = 0, 1, we have i∗0W̃ (u)|σ0 = i∗1W̃ (u)|σ1 . Hence we have
the continuity. From the definition we see ∥χτ∥L2 are uniformly bounded for all p-simplices τ , hence
W̃ p(u) ∈ L2Ωp(M) and the map is well-defined.

Next recall G acts freely and cocompactly. Hence for any p-simplex σ, we can choose D > 0 and
S > 0, such that: ∫

σ
∥W̃ (χσ)∥2 dvolσ ≥ 2 ·D

|{τ ∈ S∗(K) | τ ∈ st(σ)}| ≤ S |{τ ∈ S∗(K) | σ ∈ st(τ)}| ≤ S

where st(σ) is the closed star of τ . For p-simplex σ we choose a neighbourhood U(σ) of
∫
σ open in

K such that Uσ as a face and we choose such neighbourhoods equivariantly, i.e.:

g · U(σ) = U(gσ) U(σ) ∩ U(τ) = ∅ for σ ̸= τ

Since W (χτ ) is supported in st(τ), we have W (χτ )(x) = 0 for x ∈ U(σ)\st(τ).By possibly shrinking
U(σ) to a smaller neighbourhood we may find a number δ > 0, such that up to a small error we can
identify U(σ) with

∫
(σ)× (− δ

D ,
δ
D ), and we then have:∫

U(σ)
∥W̃ p(χτ )∥2x dvolx

{
≥ δ if τ = σ

≤ δ
4S−2)S if τ ̸= σ

(2.65)

So now given u =
∑

σ uσ · χσ, we see:∑
σ

|uσ|2 ≤
1

δ

∫
U(σ)
∥uσ · W̃ (χτ )∥2x dvol ≤ 1

δ

∑
σ

∫
U(σ)

(
∥
∑
τ

uτW̃ (χτ )∥2x + ∥
∑
τ ̸=σ

uτW̃ (χτ )∥2x
)
dvol

So now we study two summands separately by the bounds we get above. First by U(τ) are pairwise
disjoint, we have:∑

σ

∫
U(σ)
∥
∑
τ

uτW̃ (χτ )∥2x dvol ≤
∫
M
∥
∑
τ

uτW̃ (χτ )∥2x dvol ≤ ∥W̃ (u)∥L2
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On the other hand, we note by the bound in 2.65 and ∥
∑r

i=1 ai∥ ≤ (2r − 1)
∑r

i=1∥ai∥2, that:∫
U(σ)
∥
∑
τ ̸=σ

uτW̃ (χτ )∥2x =

∫
U(σ)
∥
∑
τ ̸=σ

σ∈st(τ)

uτW̃ (χτ )∥2x dvol

≤ (2S − 1) ·
∫
U(σ)

∑
τ ̸=σ

σ∈st(τ)

∥uτW̃ (χτ )∥2x dvol

≤ (2S − 1) ·
∑
τ ̸=σ

σ∈st(τ)

|uτ |2
∫
U(σ)
∥W̃ (χτ )∥2x dvol

≤ (2S − 1)S ·
∑
τ

|uτ |2 ·
δ

(4S − 2)S
≤ δ

2
· ∥u∥2L2

Summing up, we have ∥u∥L2 ≤ 2
δ∥W̃ (u)∥L2 , hence the map is bounded from below.

Now the advantage of using barycentric coordinate functions is that we can choose perform barycen-
tric divisions on K, and use such to construct a sequence of {W p

K ◦ A
p
K}K which approximates id in

operator norm. Recall mesh and fullness of a triangulation K are defined as:

mesh(K) := sup{d(p, q) | p, q vertices of 1-simplex}

full(K) := inf{ vol(σ)

dim(M)mesh(K)
| σ ∈ Sdim(M)(K)}

which measured the ‘density’ and ‘convexity’ of triangulation respectively. Then:

Lemma 2.40. [Dod77, Lemma 3.9] Fix θ > 0, k > dimM
2 +1 and an equivariant smooth triangulation

K. Then there is a constant C > 0 such that for any equivariant barycentric subdivision K ′ of K
with full(K ′) ≥ θ, we have:

∀ω ∈ HkΩp(M) ∥ω − W̃ p
K′ ◦ApK′(ω)∥0 ≤ C ·mesh(K ′)

dim(M)
2

+1 · ∥ω∥k (2.66)

Sketch of Proof. First choose local trivialization with respect to {Uσ}σ∈K , and then choose open
subsets {Vτ}τ∈K′ (again equivariantly), such that Vτ ⊆ τ , and each point in M is covered by maximally
m-many Vτ . We can get an upper bound for all x ∈ τ ∈ SN (K ′):

|ω − W̃K′ ◦AK′(ω)| ≤ C · diamτ(∥ω|Vτ ∥k + ∥ω|Vτ ∥0) (2.67)

which we can choose C independent of ω, τ and K ′ in view of [DP76, Proposition 2.4]. Consequently:

∥ω − W̃K′ ◦AK′ω∥20 ≤
∑
τ∈K′

∫
τ
|ω − W̃K′ ◦AK′(ω)|2 dvol

≤ C2 · dim(M)2 ·mesh(K ′)2+dim(M)
∑
τ

(∥ω|Vτ ∥k + ∥ω|Vτ ∥0)2

≤ 2 · C ′ ·mesh(K ′)2+dim(M)
∑
τ

((∥ω|Vτ ∥k)2 + (∥ω|Vτ ∥0)2)

≤ C ′′ ·m ·mesh(K ′)2+dim(M) · ∥ω∥2k

Since m is universally chosen, the lemma is proved.
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We may choose the subdivision K(ϵ) with mesh small enough such that ∥ω−W̃ p
K(ϵ) ◦A

p
K(ϵ)(ω)∥0 <

ϵ/2. Now choose a representative ω ∈ Hp(2)(M) with [ω] ∈ H∗
(2)(A

∗
K), we want to prove [ω] ∈

Hp
(2)(H

l−∗Ω∗(M)) vanishes.
First observe C∗

(2)(K) ∼= C∗
(2)(K

′) is compatible with differential, hence H∗
(2)(A

∗
K(ϵ))([ω]) = 0. Now

find u ∈ Cp−1
(2) (K(ϵ)) such that

∥ApK(ϵ)(ω)− c
p−1
K(ϵ)(u)∥ <

ϵ

2 · ∥W p
K(ϵ)∥

we have:

∥ω − W̃ p
K(ϵ) ◦ c

p−1
K(ϵ)(u)∥0 ≤ ∥ω − W̃

p
K(ϵ) ◦A

p
K(ϵ)(ω)∥0 + ∥W̃

p
K(ϵ) ◦A

p
K(ϵ)(ω)−W

p
K(ϵ) ◦ c

p−1
K(ϵ)(u)∥0 < ϵ

Last one checks that dp−1
max ◦W p−1

K(ϵ) = W p
K(ϵ) ◦ c

p−1
K(ϵ), hence for any ϵ > 0, we can choose v ∈ Dom dpmax

such that ∥ω−dp−1
maxv∥0 < ϵ. Consequently ω is trivial, and we have proved bijectivity of H∗

(2)(A
∗) and

consequently L2-Hodge-de Rham Theorem is proved.

The proof of Theorem 2.34 follows exactly the same procedure. We first prove Fp(K) ⪯ Fp(M):

Lemma 2.41. Given any equivariant smooth triangulation K we have

Fp(K) ⪯ Fp(H l−∗Ω∗(M)) ⪯ Fp(M)

Proof. Note surjectivity of A∗ has directly implied the first part. It suffices to prove Fp(H l−∗Ω∗(M)) ⪯
Fp(M). By the isometric isomorphism (1 + ∆p)

k/2, it suffices to

F (dp⊥
H1 : (Im dp

H2)
⊥ ⊆ H1Ωp(M)→ L2Ωp+1(M)) ⪯ F (dp⊥min) (2.68)

Now arguing like Lemma 2.38 we see for ω ∈ Ωp−1
c (M), and η ∈ Im(dp−1

min )
⊥, we have ⟨dp−1(ω), η⟩L2 = 0.

Meanwhile, for ω ∈ H1Ωp(M), one has:

∥ω∥21 = ⟨(1 + ∆)pω, ω⟩ = ∥ω∥20 + ∥dp(ω)∥20 + ∥δp(ω)∥20 (2.69)

Together we have, by restricting the inclusion H1Ωp(M)→ L2Ω(M) to Im(dp−1
H2 )⊥ one gets an injective

morphism j : Im(dp−1
H2 )⊥ → Im(dp−1

min )
⊥.

For 0 ≤ λ < 1, recall definition L(dp⊥
H1 , λ) in Definition 2.1. For ω ∈ L,we have δp(ω) = 0, and we

have:
∥dp(ω)∥20 ≤ λ2 · ∥ω∥21 ≤ λ2(∥ω∥20 + ∥dp(ω)∥20

Hence E(dp⊥min)
∗dp⊥min

λ2/(1−λ2) ◦ j is injective when restricted to L. Consequently, by Lemma 2.2

dimN (G)(L) ≤ dimN (G)(ImE
(dp⊥min)

∗dp⊥min

λ2/(1−λ2) ) = Fp(M)(
λ√

1− λ2
)

Since this holds for all L ∈ L(dp⊥
H1 , λ), we have Fp(H l−∗Ω∗(M)(λ) ≤ Fp(M)( λ√

1−λ2 ) and hence proves
the lemma.

To finish the proof of Theorem 2.34 it suffices to prove Fp(M) ⪯ Fp(K). By homotopy equiv-
alence it suffices to show the claim for one fixed smooth triangulation K. Also fix ϵ > 0. For
ω ∈ Im(E

(dp⊥min)
∗dp⊥min

ϵ2
) ⊆ Im(dp−1

min )
⊥, note (∆p)min|Im(dp−1

min )
⊥ = (δp+1dp)⊥min = (dp⊥min)

∗dp⊥min. Moreover,

E
(dp⊥min)

∗dp⊥min

ϵ2
(ω) = ω, so by Lemma 2.2 we see:

∥ω∥2k = ⟨ω, (1 + ∆p)
k(ω)⟩L2 = ⟨ω, (1 + (dp⊥min)

∗dp⊥min)
k(ω)⟩L2 ≤ (1 + ϵ2k) · ∥ω∥20 (2.70)
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Hence we have a bounded G-equivariant operator iϵ : Im(E
(dp⊥min)

∗dp⊥min

ϵ2
) ↪→ H l−pΩp(M). Now the

following diagram commutes:

Im(E
(dp⊥min)

∗dp⊥min

ϵ2
) H l−pΩp(M) Cp(2)(K) Im(cp−1)⊥

Im(E
(d

(p+1)⊥
min )∗d

(p+1)⊥
min

ϵ2
) H l−p−1Ωp+1(M) Cp+1

(2) (K) L2Ωp+1(M)

iϵ

dp⊥min

Ap

dp cp

pr

cp

iϵ Ap+1 W p+1

(2.71)

We first claim the upper composite map is bounded from below. It is a fact that we can find an
equivariant subdicision whose fullness is bounded below with mesh arbitrarily small. Hence using
Lemma 2.40 we can choose a constant C0 < 1 such that for any p-form η ∈ HkΩp(M):

∥η −W p ◦Ap(η)∥0 ≤ C0 · ∥η∥0

Denote pr′ : L2Ωp(M) ↠ Im(dp−1
min )

⊥. Then we have W p(Im(cp−1)) ⊆ Im(dp−1
min ), hence pr′ ◦W p ◦ pr =

pr′ ◦W p. For ω ∈ Im(E
(dp⊥min)

∗dp⊥min

ϵ2
), we have pr′(ω) = ω, and:

∥ω∥0 ≤ ∥pr′ ◦W p ◦Ap ◦ iϵ(ω)∥0 + ∥ω − pr′ ◦W p ◦Ap ◦ iϵ(ω)∥0
≤ ∥W p∥ · ∥pr ◦Ap ◦ iϵ(ω)∥0 + ∥ω −W p ◦Ap ◦ iϵ(ω)∥0 from pr′(ω) = ω

≤ ∥W p∥ · ∥pr ◦Ap ◦ iϵ(ω)∥0 + C0 · ∥ω∥0 from Lemma 2.40

Hence we have proved the claim.

Next we prove for all λ ≤ ϵ, and ω ∈ Im(E
(dp⊥min)

∗dp⊥min

λ2
):

∥cp ◦ pr ◦Ap ◦ iϵ(ω)∥0 ≤ C3 · λ · ∥pr ◦Ap ◦ iϵ(ω)∥0 (2.72)

We see this is straightforward by applying the claim above, Lemma 2.39 and the above commutative

diagram. Hence we conclude pr ◦Ap ◦ iϵ(Im(E
(dp⊥min)

∗dp⊥min

λ2
)) ∈ L(cp, Cλ). But pr ◦ Ap ◦ iϵ is bounded

from below hence is injective, and we have proved Fp(M) ⪯ Fp(K) and consequently Theorem 2.34
by observing:

Fp(M)(λ) = dimN (G)(pr ◦Ap ◦ iϵ(Im(E
(dp⊥min)

∗dp⊥min

λ2
))) ≤ Fp(K)(C · λ) (2.73)
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Chapter 3

Computation of L2-invariants

In this chapter we will compute various L2-invariants on various examples. The examples are arranged
in a crescendo of difficulty:

As an hors d’œuvre we first discuss the flat torus, in which we observe how the analytic approach
and the topological approaches unify;

The main course of this chapter is devoted to the computation of L2-invariants of symmetric spaces.
Before stating the main theorem Theorem 3.36 we have used two sections to familiarize the readers
with pertinent term and theorems.

3.1 L2-Invariants of Flat Torus and Zn-CW complexes

We begin the discussion with the easiest nontrivial case, namely the flat torus. Consider the flat torus
to be the quotient of Rn, under the action:

Zn −→ Isom(Rn) (a1, · · · , an) 7→
(
(x1, · · · , xn) 7→ (x1 + a1, · · · , xn + an)

)
(3.1)

Clearly this is free proper action, with the group acts isometrically, so we can Tn furnished with
the unique Riemannian metric such that the quotient map π : Rn → Tn is Riemannian covering.
Consequently, the curvature tensor on Tn vanishes altogether with

∫
Tn dvol =

∫
[0,1]n dx = 1.

Next we inspect the Laplace operators and heat kernel. The Laplacian on functions ∆0f =∑
i
∂2

∂x2i
f . On the other hand, we see L2(Rn,ΛpT ∗Rn) can be identified with L2(Rn)⊗ΛpT ∗Rn, where

the Laplacian ∆p acts on p-form ω = fdxi1 ∧ · · · ∧ dxip by ∆pω =
∑n

j=1
∂2f
∂xj

dxi1 ∧ · · · ∧ dxip , hence it
suffices to investigate the heat kernel on functions.

Now by appealing to Fourier transformation, we yield the heat kernel on functions and consequently
on forms given by:

Kp(t, x, y) =
1

(4πt)n/2
exp(−∥x− y∥

2

4t
)⊗ id

R(
n
p)

(3.2)

with
(
n
p

)
the dimension of ΛpT ∗

xRn = ΛpRn. Now trCKp(t, x, x) =
(
n
p

)
· 1
(4πt)n/2 , so consequently, for

all 0 ≤ p ≤ n
b(2)p (Rn,N (Zn)) = lim

t→∞

1

(4πt)n/2
= 0 (3.3)

Next we inspect the Novikov-Shubin invariant. To compute this we use Proposition 2.13. First observe
there is no gap in spectrum around 0, since for any λ ∈ R+, we have: ∆e

√
λxi = λ · e

√
λxi , hence the

spectrum of lambda contains R+ and in particular, α∆
p (T̃

n) ̸=∞+. Moreover,

θp(T̃n)(t) :=

∫
[0,1]n

trCKp(t, x, y) dvol =

∫
[0,1]n

(
n

p

)
1

(4πt)n/2
dvol =

(
n

p

)
1

(4πt)n/2
(3.4)
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Hence by taking Cp =
(np)

(4π)n/2 , we have:

α∆
p (T̃

n) = lim inf
t→∞

− ln(θp(T̃n)(t)− b(2)p (T̃n))

ln(t)
= lim inf

t→∞

n
2 ln(Cp · t)

ln(t)
=
n

2

We leave the computation of αp(T̃n) to the last, and compute the analytic L2-torsion first. Observe
for any 0 ≤ p ≤ n, we have:∫ ∞

ϵ
t−1 ·

(
θp(T̃n)(t)− b(2)p (T̃n)

)
dt =

∫ ∞

ϵ
Cp · t−1−n

2 <∞ (3.5)

hence Rn is indeed of analytic determinant class. Also recall [SS03, Chapter 6, Theorem 1.6 & 1.7]
that 1

Γ(s) is an entire function with simple zeros at s ∈ Z≤0. Moreover,

1

Γ(s)
= eγs

∞∏
n=1

(1 +
s

n
)e−s/n (3.6)

Then some computation gives us 1/Γ(0) = 0 and d
ds

1
Γ(s) |s=0 = 1. Now use 2.30 we choose ϵ = 1 and

have

ρan(T̃n) =
1

2

∑
p≥0

(−1)p · p ·

(
d

ds

1

Γ(s)

∫ 1

0
Cp · ts−1−n

2 dt
∣∣∣
s=0

+

∫ ∞

1
Cp · t−1−n

2 dt

)

=
1

2

∑
p≥0

(−1)p · p ·
( d
ds

Cp
Γ(s) · (s− n

2 )

∣∣∣
s=0

+
2 · Cp
n

)
=

1

2

∑
p≥0

(−1)p · p ·
(−Cp · 2

n
+

2 · Cp
n

)
= 0

(3.7)

so we see the L2-torsion vanishes for T̃n for all n.
Lastly we want to prove Fp(T̃n) = n for all 0 ≤ p ≤ n. We do this first by observe the following

general phenomenon that α∆
p (M) = 1/2 · min{αp(M), αp+1(M)}, which with a careful calibration

of domain, is a easy consequence of Lemma 2.5. But now observe on Rn the higher differential
is essentially the same as the differential on function, whence we have the same Novikov-Shubin
invariants for all p. Hence we have αp(T̃n) = n for all 0 ≤ p ≤ n.

Next we consider the topological approach. We shall begin with consider the underlying ring
N (Zn) self. From Fourier analysis it is readily to derive an isomorphism between ℓ2(Z) and L2(T )
which sends every f ∈ L2(Tn) to f̂ : Zn → C, such that:

f̂(n) := (2π)−n
∫
Tn

f(x)e−i⟨k,x⟩ dx (3.8)

and conversely sending ĝ ∈ ℓ2(Zn) to g =
∑

k∈Zn f̂(k)ei⟨k,−⟩. Moreover we see this map is Zn-
equivariant, if we take Tn ∈ Cn the unit torus, and (k1, · · · , kn) ∈ Zn acts as (z1, · · · , zn) 7→
(zk11 , · · · , zknn ). Consequently, we see N (Zn) = B(L2(Tn))Z

n . Invoking Proposition 1.9 we have a
representation of L∞(Tn) on L2(Tn):

L∞(Tn)→ B(L2(T ))Z
n (3.9)

which sends f ∈ L∞(T ) to the Zn-equivariant operator Mf : L2(Tn)→ L2(Tn) via multiplication by
f . Under this isomorphism we have the von Neumann dimension can be realized as:

dimN (Zn)(ImMf ) = trL2(Tn)(Mf ) = ⟨f ·
idTn√
vol(Tn)

,
idTn√
vol(Tn)

⟩ = 1

vol(Tn)

∫
Tn

f dvol =
∥f∥1

vol(Tn)

(3.10)
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In particular, we observe {EM|f |
λ }λ≥0 which is a family of projections on L2(Tn), can be realized using

Proposition 1.9 as:
E

|Mf |
λ = χS : L2(Tn)→ L2(Tn) g 7→ χS · g (3.11)

for the set S corresponds to the Borel subset spec(M|f |) ∩ (−∞, λ] = essran(|f |) ∩ (−∞, λ]. Hence in
our case,

S = {z ∈ Tn | |f(z)| ≤ λ}
The reader can readily verify that this indeed defines a spectral measure which satisfy the conditions
stated in Spectral Theorem.

Now we move to consider L2-Betti number and Novikov-Shubin invariants for general Zn-CW
complexes of finite type.

Lemma 3.1. Let C∗ be a free C[Zn]-chain complex of finite type with some basis. Denote C[Zn](0)
be the quotient field of C[Zn]. Then:

b(2)p (C
(2)
∗ ) = dimC[Zn](0)

(
C[Zn](0) ⊗C[Zn] Hp(C∗)

)
(3.12)

Proof. Since the Betti number only captures local data, we may assume without loss of generality
that C∗ is finite dimensional. Abbreviate C[Zn](0) ⊗C[Zn] C∗ as C(0)

∗ , we first treat the case where
C

(0)
∗ has trivial homology. Since C[Zn](0) is a field, we have C(0)

∗ is contractible and can then choose
a C[Zn](0)-chain contraction δ∗ for it. Now we claim there exists a u ∈ C[Zn] such that for all p,
Mu ◦ δp = γ

(0)
p for some C[Zn]-chain map γ∗ : C∗ → C∗+1, and Mu the multiplication by u. To see so,

we choose a C[Zn](0)-basis of C(0)
∗ and take δ∗ as a finite-dimensional C[Zn](0)-valued matrix. Then

take u to be the product of all entries of this matrix, we have Mu ◦ δ∗ to be a C[Zn]-valued matrix,
and hence can be realized as a C[Zn]-chain map γ∗.

Now γ∗ defines a C[Zn]-chain homotopy Mu ≃ 0 : C∗ → C∗ since Mu commutes with any chain
map. This indeed induces a chain homotopy of Hilbert N (G)-chain complexes. Now by appealing to
the previous discussion on structure of N (Zn), we see M (2)

u is an injective map between ℓ2(Zn)k and
hence all L2-homology H(2)(C

(2)
∗ ) vanishes, whence b(2)p = 0.

Now we treat the general case by construct some acyclic mapping one. Denote bp to be the C[Zn]-
dimension of

(
C[Zn](0)⊗C[Zn]Hp(C∗)

)
. Now since C[Zn](0) is a field, we have C[Zn](0)⊗C[Zn]Hp(C∗) is

a C[Zn](0)-free module, hence by choosing appropriate basis, we have a C[Zn](0)-isomorphism between
⊕bpi=1C[Zn](0) → C[Zn](0) ⊗C[Zn] Hp(C∗). Again by the same trick as the first case, we can compose it
with a suitable element such that the composite map is induced by some C[Zn]-map:

ip : ⊕
bp
i=1C[Z

n]→ Hp(C∗) (3.13)

Now Take D∗ be a C[Zn]-chain complex with Dp = ⊕bpi=1C[Zn] for all p and the differential are all
trivial. Then we have H(C∗) = H(D∗). Now consider the chain map j∗ : D∗ → C∗ with jp = ip for all
p. Consider the following exact sequence of C[Zn]-chain complexes:

0 −→ C∗ −→ cone∗(j∗) −→ ΣD∗ −→ 0

where ΣC∗ the suspension of C∗, is hence a free C[Zn]-module. Thus this sequence splits, and hence we
may extend it to a exact sequence to C(2)

∗ or C(0)
∗ . Now we see from the exact sequence that cone∗(j∗)

is acyclic, and then the first case applies. Now Theorem 2.25 shows b(2)p = b(2)(C
(2)
∗ ) = b(2)(D

(2)
∗ ) =

bp.

Now we proceed to prove Novikov-Shubin invariants for Z-CW complexes, Since we will need the
underlying ring to be a principal ideal domain, which is only enjoyed by C(Z) but not for C(Zn) in
general, hence a complete analog of Lemma 3.1 is not possible. Nonetheless, this can be remedied by
studying some product formula of spectral density functions and Novikov-Shubin invariants.
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Lemma 3.2. Let G and H be discrete groups. Let f : U → U and g : V → V be positive maps
of Hilbert N (G)-modules and Hilbert N (H)-modules respectively. Then f ⊗ idU + idV ⊗g defines a
positive map of Hilbert N (G×H)-modules with:

F (f ⊗ idV + idU ⊗g) ≃ F (f) · F (g) (3.14)

Proof. It is clear from definition of von Neumann dimension that dimN (G×H)(U ⊗ V ) = dimN (G)(U) ·
dimN (H)(V ). Now for x ∈ Im(Efλ/2) = F (f)(λ/2), and y ∈ (Egλ/2) = F (g)(λ/2), we have from
Lemma 2.2

∥(f ⊗ idV + idU ⊗g)(x⊗ y)∥ ≤ ∥f(x)∥ · ∥y∥+ ∥x∥ · ∥g(y)∥

≤ λ

2
∥x∥∥y∥+ λ

2
∥x∥∥y∥ = λ∥x⊗ y∥

Hence we have again by Lemma 2.2, that F (f)(λ/2) · F (g)(λ/2) ≤ F (f ⊗ idV + idU ⊗g)(λ).
On the other hand, f ⊗ idV ≤ f ⊗ idV + idU ⊗ implies F (f ⊗ idV ) ≥ F (f ⊗ idV + idU ⊗) and

consequently Im(Ef⊗idV + idU ⊗
λ ) ⊆ Im(Ef⊗idV

λ ). By a symmetric argument, we have:

Im(Ef⊗idV + idU ⊗
λ ) ⊆ Im(Ef⊗idV

λ )⊗ Im(EidU ⊗g
λ ) = Im(Efλ)⊗ Im(Egλ)

Summing up the result, we have F (f)(λ) · F (g)(λ) ≥ F (f ⊗ id+ id⊗g)(λ).

Now the lim inf does not comply with additivity of two functions, so the Novikov-Shubin invariants
of two functions does not necessarily adds up. This has motivates the following definition:

Definition 3.3. A Fredholm spectral density function has the limit property if F (λ) = F (0) for
some λ > 0, or if

lim
λ→0+

ln(F (λ)− F (0))
ln(t)

(3.15)

exists. We say a Fredholm Hilbert chain complex C∗ has the limit property if Fp(C∗) has the limit
property for all p ∈ Z, and a G-CW complex X of the finite type has the limit property if the
asscociated cellular L2-chain complex has the limit property.

Define now another auxiliary function δ : [0,∞]→ {1}∪{∞+} such that δ(0) :=∞+ and δ(r) = 1
elsewhere.

Lemma 3.4. Let F,G are two density functions which are Fredholm and has the limit property, then
so is F ·G with:

α(F ·G) = min{α(F ) + α(G), δ(F (0)) · α(G), α(F ) · δ(F (0))} (3.16)

Proof. Since α(F ) = α(F − F (0)), so it suffices to treat the case F (0) = G(0) = 0. Now the result is
direct from ln(F ·G) = ln(F )·(G) and the limit exists, so the result readily follows from Lemma 2.5.

Now the following product formula follows from the previous lemmas as well as a careful calibration
of domain. We omit the proof due to the cumbersome notations. For details of proof refer to [Lüc13,
Lemma 2.35]:

Theorem 3.5. Let G,H be discrete groups. Let C∗ and D∗ be a Hilbert N (G)-chain complex and
a Hilbert N (H)-chain complex respectively. Suppose Cp and Dp vanishes for p < 0, and are both
Fredholm with limit property. Then C∗⊗D∗ is a Fredholm Hilbert N (G×H)-chain complex with limit
property and:

α∆
n (C∗ ⊗D∗) = min

i=0,··· ,n
{α∆

i (C∗) + α∆
n−i(D∗), δ(Fi(C∗)) · α∆

n−i(D∗), δ(Fi(D∗)) · α∆
n−i(C∗)} (3.17)
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and

αn(C∗ ⊗D∗) = min
i=0,··· ,n

{αi+1(C∗) + αn−i(D∗), αi(C∗) + αn−i(D∗),

δ(Fi(C∗)) · αn−i(D∗), δ(Fi(D∗)) · αn−i(C∗)} (3.18)

From this we can easily derive analogical formulae for products of G-CW complexes for varying
G’s. In particular, it suffices, in view of this theorem, to compute the Novikov-Shubin invariants of
N (Z)-chain complexes.

Lemma 3.6. Let C∗ be a free C[Z]-chain complex of finite type. Since C[Z] is a principal ideal
domain, we by the structure theorem can write:

Hp(C∗) = C[Z]np ⊕

( sp⊕
ip=1

C[Z]/((z − ap,ip)rp,ip )

)
(3.19)

fir ap,ip ∈ C, and np, sp, rp,ip ∈ Z with np, sp ≥ 0 and rp,ip ≥ 1, and z a fixed generator of Z. Then
ℓ2(Z)⊗C[Z] C∗ has the limit property. Take S = {ip = 1, · · · , sp | ∥ap,ip∥ = 1}. Then we have:

αp+1(C
(2)
∗ ) =

{
min{ 1

rp,ip
| ip ∈ S} if sp ≥ 1, S ̸= ∅

∞+ if otherwise
(3.20)

Proof. The key of this lemma is to reconstruct a chain complex with nicer differential map at each
degree, which induces the same homology as C∗.

Let P (np)∗ be the free C[Z]-chain complex concentrated in dimension 0 with module C[Zn]np . Let
Q(ap,ip , rp,ip)∗ be another free C[Z]-chain complex concentrated in dimension 0 and 1 as follows:

· · · 0 C[Z] C[Z] 0 · · ·
M

(z−ap,ip )rp,ip

Now H∗(D∗) concentrated at dimension 0 with C[Z]/((z − ap,ip)rp,ip). Now assembling components
together, we can easily construct the following C[Z]-map:

f∗ :
⊕
p≥0

Σp

(
P (np)∗ ⊕

sp⊕
ip=1

Q(ap,ip , rp,ip)∗

)
−→ C∗

which induces an isomorphism on homology. Now since both sides are free C[Z]-modules, we have f to
be a C[Z]-chain equivalence. Now by Lemma 2.5 it suffices to prove the statement for Q-component,
i.e., for a ∈ C, r ∈ Z, rg ≥ 1, we have:

α1(Q(a, r)∗) =

{
1
r if ∥a∥ = 1

∞+ if ∥a∥ ̸= 1
(3.21)

Next from the discussion on von-Neumann algebra of Zn we see immediately from the differential being
injective that: F1(Q(a, r)∗)(λ) = F (M(z−a)r)(λ) = F (M|(z−a)r|)(λ) = vol{z ∈ S1 | |(z − a)r| ≤ λ}.
Now clearly F1 = 0 for 0 ≤ λ < |1− |a||r, and α1 =∞+ for |a| ̸= 1. Otherwise, we have:

vol{z ∈ S1 | |(z − a)r| ≤ λ} = vol{cos(ϕ) + i sin(ϕ) | |2− 2 cos(ϕ)|r/2 ≤ λ} (3.22)

Moreover, we see limϕ→0
2−2 cos(ϕ)

ϕ2
= 1, that Q(a, r) has the limit property, with α1(Q(a, r)∗) = 1

r .
Hence the lemma is proved.
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Lastly we see the L2-torsion of a finite free Zn-CW complex that is of det-L2-acyclic. Again we
follow the same mechanism as in Novikov-Shubin invariants, by procuring some product formula of
L2-torsion of det-L2-acyclic free G-CW complexes for varying Gs. Then from L2-torsion of Z-CW
complexes we get results for spaces that are products of such Z-CW complexes, so in particular has
included T̃n, since all its L2-Betti numbers vanish.

Theorem 3.7. [Lüc13, Theorem 3.35(6)] Let f : C∗ → C ′
∗ be a chain map of dim-finite Hilbert vna(G)-

chain complexes and g∗ : D∗ → D′
∗ a chain map of dim-finite Hilbert vna(H)-chain complexes. Denote

χ(2)(C∗) ∈ R the L2-Euler characteristic. Then:

I If D∗ is further det-L2-acyclic, then so is C∗⊗D∗ as dim-finite Hilbert N (G×H) chain complex,
with:

ρ(2)(C∗ ⊗D∗) = χ(2)(C∗) · ρ(2)(D∗) (3.23)

II If C∗ and D∗ are of determinant class, then so is C∗ ⊗D∗ and:

ρ(2)(C∗ ⊗D∗) = χ(2)(C∗) · ρ(2)(D∗) + χ(2)(D∗) · ρ(2)(C∗) (3.24)

III If f∗ and g∗ are weak homology equivalences of determinant class, then so is f∗ ⊗ g∗ and:

ρ(2)(cone∗(f∗ ⊗ g∗)) = χ(2)(C∗) · ρ(2)(cone∗(g∗)) + χ(2)(D∗) · ρ(2)(cone∗(f∗)) (3.25)

Now the following theorem follows readily from this and the fact that χ(2)(X) = χ(G\X) for finite
free G-CW complexes:

Theorem 3.8 (Product Formula for L2-torsion). Let X be a finite free G-CW complex and Y
a finite free H-CW complex. Suppose X is det-L2-acyclic, then the finite free G × H-CW complex
X × Y is det-L2-acyclic and:

ρ(2)(X × Y,N (G×H)) = χ(H\Y ) · ρ(2)(X,N (G)) (3.26)

So now we consider a det-L2-acyclic C[Z]-chain complex C∗. First note any acyclic chain complexes
of free modules over a principal ideal domain is contractible, by a easy induction from below and
structure theorem of finitely generated module over principal ideal domain. Hence we have such C∗ is
contractible. Now Theorem 2.31 implies ρ(2)(C∗) = ϕZ(τ(f)) depending on the G-chain contraction f
we choose. However, since the Whitehead group Wh(Z) vanishes (in fact, [BHS64] shows Whitehead
group vanishes for any Zn). Consequently, ρ(2)(C∗) = 0. So in view of Theorem 3.8 we proved that
for any finite free G-CW complex D, then D × S1 has vanishing L2-torsion.

3.2 Survey on Lie Algebra and Plancherel Formula

From this section onwards we set off to compute the L2-invariants of symmetric spaces, together with
a discrete group Γ acts on it properly free. This will provide an arsenal which may then be used to
yield some partial results of some outstanding conjectures.

The trilogy begins with a crude survey on basic definitions and facts of representation of semisimple
Lie groups. This is a vast topic with many ramifications, and has insofar witnessed many important
applications to L2-cohomology. It is way beyond the efforts of this article to even enumerate all these,
and we will hence satisfy with ourselves at those aspects which related to our main discussion. For
details of many important results we quote herewith the reader is referred to the classical text [Kna16].

The second part is continuous cohomoloy of Lie groups, which is a natural outgrowth of the
underlying representation theory. It has a potential to be extended to general reductive groups such
as p-adic groups, but we are content with linear connected reductive groups. Interested reader can
also refer to [BW13] for a thorough discussion.
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Throughout the rest of the chapter we are working with linear connected reductive group,
which is a closed connected group of real or complex matrices that is stable under conjugate transpose.
In this section we collect all th relative terms and theorems in representation of Lie algebra, cumulating
to the point of a Fourier inversion formula on such group, due to Harish-Chandra [HC76].

First recall an analytic group is a topological group with smooth structure compatible with group
multiplication and inversion. A Lie group is a locally connected topological group with a countable
base such that the identity component is an analytic group. An abstract Lie algebra is a vector
spaces with Lie brackets, The Lie algebra of an analytic group G is the tangent space at identity.
Throughout this chapter we use old German fraktur letters g, h, · · · to denote Lie algebras.

Given a real semisimple Lie algebra g, we define the Killing form B for g to be:

B(X,Y ) = tr(adX adY ) (3.27)

with adX the adjoint representation of Lie algebra on g with adX(Z) = [X,Z] for X,Z ∈ g. We
define a Cartan involution θ on g to be an automorphism of g such that θ2 = 1, and such that
−B(X, θY ) defines a positive definite symmetric form on g. Throughout our discussion we take Θ be
inverse conjugate transpose on G and take θ = dΘ|e and call both Cartan involution.

A θ-stable Cartan subalgebra of g is a subalgebra h that is maximal among abelian θ-stable
subalgebras of g. A Θ-stable Cartan subgroup H of G is defined as ZG(h) for some θ-stable Cartan
subalgebra h. It is a fact that all θ-stable Cartan subalgebras of g have same dimension1, hence we
can define the (complex) rank rankC(G) of G to be the dimension of θ-stable Cartan subalgebra.
As a surprising result, the rank have completely decide if the L2-invariants of symmetric space of
noncompact type vanish, as we will discuss in Theorem 3.36.

With respective to θ one admits for g a Cartan decomposition, given by:

g = k⊕ p (3.28)

with k and p are respectively ±1-eigenspaces of θ. Since θ is an automorphism, we have:

[k, k] ⊆ k, [k, p] ⊆ p, [p, p] ⊆ k (3.29)

So in particular k is a Lie subalgebra of g.
Define trace form B0 on g by B0(X,Y ) := tr(XY ). Note B0|p is positive definite. Then ⟨X,Y ⟩ =

−ReB0(X, θ(Y )) defines an inner product on g, and we see p and k are orthogonal with respect to
⟨−,−⟩.

With respect to Cartan decomposition we can construct a compact dual of G, wherein we can
apply all the nice theories of compact Lie groups. We can assume for most of time that k ∩ ip = 0.2
Then the compact dual, which we denote as Gd is the analytic group of matrices with Lie algebra
k⊕ p. It is a fact [Kna16, Proposition 5.3] that Gd is compact if G is linear connected semisimple.

Following this we fix a θ-stable Cartan subalgebra h and then form a Cartan subalgebra of the
compact dual gd = k⊕ p to be hd = (h ∩ k)⊕ i(h ∩ p). Observe hC = hC, so then we can apply the root
space decomposition in compact case to this by discussing ∆ := ∆(hC : gC) (See [Kna16, Chapter IV]
for discussion in compact Lie group case. It is also similar to the case of restricted root as mentioned
later.) Again as in compact case, we can define an ordering for ∆ and define a notion of positivity
on it. Moreover, we can define a subset of simple root in positive roots, i.e., all those positive roots
that cannot be decomposed into sum of two positive roots.

Now one can define an algebraic Weyl group W (hC : gC) to be the generated by all root
reflection {sα}α∈∆ with sα the reflection of ∆(hC : gC) with respect to hyperplane α⊥. Furthermore,

1This can be seen from that θ-stable Cartan subalgebra are compatible with compact dual. Now all Cartan subgroup
of a compact Lie group are conjugate with each other hence have same dimension.

2For G to be real linear this is trivial. for cases when G such as SL(2,C), we need to interpret gC and GC in the way
that we regard G ⊆ GL(n,C) ⊆ GL(2n,R). The exact way we force k ∩ ip = 0 will not be important.
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define analytic Weyl group W (H : G) := NK(H)/ZK(H). Then we have W (H : G) ⊆W (hC : gC),
with equality holds if G is compact.

Now consider the adjoint representation of Lie algebra. Consider a to be a maximal abelian
subspace of p. With respect to ⟨−,−⟩ we see each adp are symmetric matrices. So ada give a
commuting subfamily of symmetric matrices are simultaneously diagonalizable with real eigenvalues.
Then this defines a linear functional λ on a, we write:

gλ = {X ∈ g | ∀H ∈ a, [H,X] = λ(H)X} (3.30)

If λ is not trivial on H, and gλ ̸= 0, then we say λ is a restricted root of g with gλ the restricted
root space. We denote the set of restricted roots with ∆(a : g), or Σ, when there is no ambiguity on
a. We also denote Zk(a) to be all the elements in k that commutes with all elements in a. Now:

Proposition 3.9. [Kna16, Proposition 5.9] Restricted roots and their root space decomposition have
the following properties:

1. g = g0 ⊕
⊕

λ∈Σ gλ;
2. [gλ, gµ] ⊆ gλ+µ;
3. θgλ = gλ and hence Σ is a symmetric subset of a∗;
4. If λ ̸= µ, then gλ is orthogonal to gµ with respect to ⟨−,−⟩;
5. g0 = a⊕m, where m = Zk(a), the sum is orthogonal with respect to ⟨−,−⟩.

Again we may define positivity on Σ. Denote all the positive restricted roots to be Σ+, we define
n =

∑
λ∈Σ+ gλ. Now from Cartan decomposition, which we can derive Iwasawa decomposition:

Theorem 3.10 (Iwasawa decomposition). [Kna16, Theorem 5.12] For G a linear connected
semisimple group, then we have a direct sum decomposition g = k⊕a⊕n. Let A and N be the analytic
subgroups with Lie algebras a and n. Then A,N and AN are simply connected closed subgroups of G
and the multiplication map:

K ×A×N → G, (k, a, n) 7→ kan

is a diffeomorphism onto.

Iwasawa decomposition now allows us to define real rank of G to be the dimension of a. This rank
determines the existence of discrete series representation, which then decides the discrete spectrum of
∆, as later discussions reveal.

Following the way of Iwasawa decomposition we can form a scheme of decomposing closed sub-
groups of G. If we write Iwasawa decomposition as G = KApNp and take compact subgroup
Mp = ZK(Ap). Note Mp normalizes each space gλ and hence MpApNp is a closed subgroup of G.
We define MpApNp and its conjugates to be minimal parabolic subgroup of G.

A parabolic subgroup of G is a closed subgroup containing some conjugate of MpApNp. Now
for each parabolic subgroup there is a corresponding decomposition S =MAN known as Langlands
decomposition, which is uniquely defined by the following properties:

1. At Lie algebraic level we have s = m⊕ a⊕ n;
2. m, a, n are mutually orthogonal with respect to ⟨−,−⟩ on g;
3. m⊕ a = s ∩ θs = Zg(a);
4. a = p ∩ Zm⊕a.

Now let A,N,M0 be the analytic subgroup of G corresponding to a, n,m respectively, and denote
M = ZK(a)M0, then one can show that similar to Iwasawa decomposition that multiplication defines
a diffeomorphism M × A × N onto S, and M0 is a linear connected reductive group with compact
centre. Now the parabolic subgroups are classified by the following result:
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Proposition 3.11. [Kna16, Proposition 5.23] Fix MpApNp and let Σ+ be positive roots of (g, ap)
determined by np. Let Π be the set of simple root in Σ+, the same way as we defined semisimple
case. Then there is a one-to-one correspondence between:{

S =MAN | S ⊇MpApNp parabolic
}
←→

{
ΠS ⊆ Π

}
(3.31)

with the correspondence being λ ∈ ΠS if and only if gλ ⊆ m. Furthermore, no two of these parabolic
are conjugate within G.

Remark 3.1. Note there is a natural construction of parabolic subgroups from θ-stable Cartan
subalgebras. Choose one such subalgebra h and take m, a, n as follows:

1. a := h ∩ p;
2. m the orthogonal complement of a in Zg(a);
3. Perform a restricted root decomposition relative to ad a as in Proposition 3.9 and similarly define

n to be the sum of positive root spaces.

Similar to before, we obtain a parabolic subgroup S =MAN . This parabolic subgroup is characterized
by the fact that m has a Cartan subalgebra h ∩ k. We call such cuspidal parabolic subgroup. By
[Kna16, Theorem 5.22(b)], there is a unique θ-stable Cartan subalgebra h (up to conjugacy) such
that the Cartan subalgebra h ∩ k takes maximal dimension. We call the cuspidal parabolic subgroup
constructed from such h the fundamental parabolic subgroup.

Remark 3.2. Together with Proposition 3.11 we have if dim hi ∩ p ≤ dim hj ∩ p, then we have the
following “hierarchy”, which can be made to subsets by conjugacy within G:

dim ai ≤ dim aj dimmi ≥ dimmj dim ni ≥ dim nj (3.32)

So in particular, the fundamental parabolic subgroup P = MAN takes minimal dim a = dim h −
dim h ∩ k, where h ∩ k in this case is the Cartan subalgebra of k. Summing up, we have for any
cuspidal subgroup Pi = MiAiNi, we have dim ai ≥ rankC(G) − rankCC(K), with the equality taken
in case of fundamental parabolic subgroup.

As the last step before stating the main result, we need to define a special type of irreducible
unitary representations on M then derive an induced representation (of the same type) on G. The
stunning result is that the character of these representations govern the a all Schwartz functions on
G/K, as Plancherel formula later reveals.

Definition 3.12. [Kna16, Propsition 9.6] Given an irreducible unitary representation π of G on V ,
the following conditions are equivalent:

1. π is equivalent with a direct summand of the right regular representation R of G on L2(G),
where R(g)f(x) = f(xg);

2. Given any u, v ∈ V , matrix coefficients πu,v : G → C defined by πu,v(g) = ⟨π(u), v⟩V is in
L2(G).

When these conditions are satisfied, we say π is in the discrete series of G.

One should note when G is compact, then every irreducible representation can be made unitary
by averaging the inner product on V and can be shown to be discrete series. Consequently, we know
Mp in minimal parabolic subgroup, which is always compact, have discrete series.

More generally, we consider the case when rankCG = rankCK, then we can choose b ⊆ k ⊆ g be
a Cartan subalgebra. As a direct consequence, we can define root systems for both gC and kC with
respect bC, as we did in restricted root case. Denote:

∆ = ∆(bC : gC) ∆K = ∆(bC : kC) (3.33)
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with respective algebraic Weyl group WG and WK . Relative to any choice of positive system ∆+ we
shall take ∆+

K = ∆+ ∩∆K , and define:

δG :=
1

2

∑
α∈∆+

α, δK :=
1

2

∑
α∈∆+

K

α (3.34)

Lastly we state for a general θ-stable Cartan subalgebra h, a linear functionl λ ∈ (hC)∗ is analytically
integral if for all H ∈ h0 := (h ∩ k)⊕ i(h ∩ p) with expH = 1, then λ(H) ∈ 2πiZ. Note this implies
that λ is real-valued on ih0.

Now we are ready to state the result of Harish-Chandra [Cha66] which classified all discrete series
representations:

Theorem 3.13. [Kna16, Theorem 9.20 ,12.20 & 12.21] A linear connected semisimple group G has
discrete series representations if and only if rankC(G) = rankC(K). In such case, for λ ∈ (ib)∗

nonsingular, i.e., for all α ∈ ∆, ⟨λ, α⟩ ̸= 0. take ∆+ respectively to be:

∆+ = {α ∈ ∆ | ⟨λ, α⟩ > 0} (3.35)

If furthermore λ+δG is analytically integral, then there exists a discrete series representation πλ, with
two such constructed representations equivalent if and only if their parameters λ are conjugate under
WK . Moreover, this has classified all discrete series up to equivalence.

Remark 3.3. We call such λ Harish-Chandra parameter of the discrete series πλ. One can also
write out properties of such discrete series (e.g. infinitesimal character, highest weight, etc.) Readers
can refer to [Kna16, Theorem 9.22ff] for more details.

As one last step to-wards the statement of Plancherel formula, we want to see how a discrete series
of M3 can induce a general representation of G as follows:

Definition 3.14. Given an irreducible unitary representation σ of M on a space V σ and ν ∈ (aC)∗,
then we can form the induced representation of σ⊗exp ν⊗1 of S =MAN to be the representation
of G, which we denote as (πσ,ν ,H

σ,ν), with the representation space defined as:

Hσ,ν :=
{
F : G→ V σ | F (xman) = e−(ν+ρa) log aσ(m)−1F (x), F |K ∈ L2(K,V σ)

}
(3.36)

with norm of ∥F∥2 :=
∫
K |F (K)|2 dk, and G in the induced representation acts on F by g · F (x) =

F (g−1x). Here ρa := 1
2

∑
α∈∆+(a:g) α the half sum of restricted positive roots, with positivity decided

by N .

Recall C(G) the Schwartz space containing all smooth functions which are rapidly decaying
under all left and right invariant derivatives by U(gC). (see [Kna16, Chapter XII.§4] for definition)
and denote C(G)K×K the subspace of bi-K-finite-Schwartz functions.(c.f. Definition 3.18)

Now we are ready to state the main result of this section:

Theorem 3.15 (Plancherel formula). [Kna16, Theorem 13.11] Let G be a linear connected reductive
group, and let H1, · · · ,Hs be a complete set of non-conjugate Θ-stable Cartan subgroups. Then there
exist computable real analytic functions pHj (λ, iν) : ib∗j × ia∗j → [0,∞) such that for all f ∈ C(G)K×K :

f(g) =
s∑
j=1

{ ∑
λ∈M̂d

∫
a∗j

tr(πλ,iν(f)πλ,iν(g
−1))pHj (λ, iν) dν

}
(3.37)

3one should be warned that we conceal much details about the discrete series of M here, as M is often not connected.
To remedy this, we construct discrete series of M0 and M0ZM , and extend them to M by induced representation. To
see more details, one can inspect [Kna16, Chapter XII §8].

46



3.2. SURVEY ON LIE ALGEBRA AND PLANCHEREL FORMULA

where for each j, λ runs over infinitesimal characters of all equivalence class of discrete series of Mj

constructed from Hj, and bj the subalgebra of mj and bj⊕aj = hj. Moreover, let H1 be the maximally
compact Cartan subgroup, then for a nonzero constant c, such that pH1(λ, iν) takes the form:

pH1(λ, iν) = C(−1)
dim n1

2

∏
α∈∆+

⟨λ+ iν, α⟩
⟨ρg, α⟩

(3.38)

with C a non-zero constant depending only on normalization of Haar measure.

Remark 3.4. There are several things to note in Plancherel formula:

1. The Plancherel measures pHj (λ, iν) dν depends on the normalization of Haar measure dg.
In our case we use the following: Let dx be the Riemannian volume form of X = G/K and dk
be the Haar measure of K such that

∫
K dk = 1. Then we have:∫

G
f(g) dg =

∫
X

∫
K
f(gk) dk dx (3.39)

We also normalize trace form B0 on g such that its restriction to p ∼= TeKX coincide with the
Riemannian metric of X. Then set dν to be the Lebesgue measure corresponding to the induced
form on a∗. By these choices pHj (λ,−) is uniquely determined.

2. The determination of the Plancherel density for fundamental parabolic subgroup has several
variation. In particular, [Kna16] used an averaged version of characters, which is differed from
the version of our use by a constant. Moreover, the constant CX was not explicitly there, which
arise as we differentiate a function F Tf . In general, this takes some effort to compute. In [HC75]
and [HC76] both are explicitly computed, which is only different from our version by a constant
arise from difference in normalization of measures dg and dν. We shall explain this in times of
need.

3. The Plancherel density pHj (λ, iν) is an elementary function, i.e., it is a function of one variable
which is a composition of arithmetic operations. In particular, it is a function of polynomial
growth.

4. We note here the second sum runs over all Harish-Chandra parameters of M associated to
Hj , which we can, in view of Theorem 3.13, replace by all equivalence class of discrete series.
Moreover, for each Hj we can construct as before a cuspidal parabolic subgroup, so the first sum
can also be summed over conjugacy classes of cuspidal parabolic subgroups of G.

5. Note C(G)K×K is dense in L2(G). When iν ∈ ia∗ purely imaginary, we have πσ,iν unitary, and
then for f ∈ C(G)K×K :

πσ,iν(f) :=

∫
G
f(g)πσ,iν dg (3.40)

defines a trace-class operator on Hσ,ν . This in fact holds for every admissible representation
with K-types bounded.(See for instance [Kna16, Theorem 10.2])

6. Note in ?? dim n1 of fundamental parabolic subgroup P1 = MAN has even dimension [BW13,
Chapter III, Lemma 4.2(i)].

To conclude this section, we mention lastly admissible representations of a Lie group G and its
interaction with centre of universal enveloping algebra, which will be of crucial importance to our
ensuing discussions on relative Lie cohomology. We begin with universal enveloping algebra.

Definition 3.16. Let g be a finite-dimensional Lie algebra over C and let T (g) :=
∑∞

r=0

⊗r g the
tensor algebra of g, and the universal enveloping algebra U(g) is the quotient of T (g) by two
sided ideal generated by:

{(X ⊗ Y − Y ⊗X − [X,Y ]) | X,Y ∈ g}
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It satisfied the universal property that if ϕ : g → A a homomorphism between associative algebras
with identity such that ϕ([X,Y ]) = ϕ(X)ϕ(Y )− ϕ(Y )ϕ(X), then it admits a unique lift to an algebra
homomorphism ϕ : U(g)→ A via the canonical inclusion g→ U(g).

Let GR be an analytic group with Lie algebra gR. Now we can identify U((gR)
C) with the space of

left-invariant differential operator D(GR) via the following algebra isomorphism: Given X ∈ gR, then
assign to it a left-invariant vector field X̃ via:

X̃f(x) =
d

dt
f(x · (exp tX))

∣∣
t=0

(3.41)

One can also take it as an first-order differential operator. Now extend the map to U((gR)
C) via

universal property. Conversely, given a differential operator D ∈ D(GR), we realize it as an element
in U(g) use the equation above.

Definition 3.17. Denote Z(gC) the centre of U(gC). By [Kna16, Proposition 3.8] we can identify the
centre with all G-invariant differential operator, i.e.,

Z(gC) = {D ∈ U(gC) | ∀g ∈ G,AdgD = D} (3.42)

Recall B(X,Y ) = tr(adX adY )) the Killing form of g. Choose a basis X1, . . . , Xn of g, then g =
[gij ] := [B(Xi, Xj)] defines a n× n-invertible matrix with inverse [gij ]. Put Xj =

∑
i g
ijXi. We now

define the Casimir element Ω in gC by Ω :=
∑

i,j gijX
iXj . One can show Adg Ω = Ω for all g ∈ G,

hence we have Ω ∈ Z(gC).

Definition 3.18. Let G be linear connected reductive with compact subgroup K and π is a represen-
tation of G on a Hilbert space V . We call v ∈ V to be K-finite if π(K)v spans a finite-dimensional
space. When K acts by unitary operators, then π|K splits into orthogonal sum of irreducible repre-
sentations by Peter-Weyl Theorem [Kna16, Theorem 1.12]:

π|K =
⊕
τ∈K̂

nττ (3.43)

with K̂ denotes the equivalence class of irreducible representations of K, and nτ ∈ N ∪ {∞} is the
multiplicity. Consequently, K-finite vector is dense in V . We call all those τ with positive multiplicity
in π the K-types of π.

One can prove for irreducible unitary representation on V , the multiplicities nτ ≤ dim τ for every
τ in K-type of π (c.f. [Kna16, Theorem 8.1]). This then motivates the following definition:

Definition 3.19. A representation of linear connected reductive group G on Hilbert space V is
admissible if:

1. π(K) operates by unitary operators;
2. Each K-type of π has finite multiplicities.

If K is furthermore maximally compact, then every K-finite vector in an admissible representation
is a C∞-vector, and moreover is the space of K-finite vectors is stable under π(g) (see [Kna16, Propo-
sition 8.5]). Consequently we have admissible representation induces a representation of g on K-finite
vectors. we can define any two admissible representations π and π′ of G on V and V ′ respectively are
infinitesimally equivalent if there is a linear isomorphism L : V → V ′ such that π(g)L = Lπ′(g).

Analogically can define k-finite vectors in a representation of g on V to be those vectors such
that U(kC) · v is finite dimensional; and admissible representations of g to be such where k acts as
skew-adjoint operators and each k-type has finite multiplicities. Note K acts on V as unitary operators
implies that k acts as skew-adjoint operators.
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The significance of admissible representations is twofold: First it allows us to define two type
of characters, from which we are enough to distinguish infinitesimally inequivalent representations;
Second its character can be expressed as a locally integrable function of G which is analytic on the
regular part. we focus on the first property here. As it turns out in Theorem 3.26, the characters has
determined if the cohomology vanish.

Theorem 3.20. [Kna16, Theorem 8.7 & 8.9; Corollary 8.10 & 8.14] Let π be an admissible represen-
tation of a linear connected reductive group G on V . Let V0 be the subspace of K-finite vectors in V ,
then:

1. For any u ∈ V0, v ∈ V , we have the function πu,v : g 7→ ⟨π(g)u, v⟩ a analytic function on G;
2. Any g-invariant subspace of K-finite vectors is G-invariant;
3. There is a one-to-one correspondence between:

{closed G-invariant subspaces of U of V } ←→ {g-invariant subspaces of U0 of V0}

The correspondence being U0 = U ∩V0 and U = U0. In particular, π(G) has no nontrivial closed
invariant subspaces in V if and only if π(g) has no nontrivial invariant subspaces in V0. In such
case we call π irreducible admissible.

4. If π is irreducible admissible, then each member of Z(gC) acts as scalar operators on V0.

More generally when G is an admissible representation π for which π(Z) acts as scalars on K-
finite matrices (in particular when π is irreducible), we can define a character χ : Z(gC)→ C given by
π(Z) = χ(Z) · id. In such case we say π has infinitesimal character χ.

While this character garners information of differential operators on G, the other type of character
gives information on L2(G). Recall π(f) :=

∫
G π(g)f(g) dg gives a representation of C∞

c (G) on V .

Definition 3.21. Given an admissible representation (π, V ) of G on has a global character Θ if for
all f ∈ C∞

c (G), π(f) is of trace class when considered as a endomorphism of V and if Θ : f 7→ trπ(f)
is a distribution.

Now admissible representations works acts an ideal receptacle for global characters, as the following
reveals:

Theorem 3.22. [Kna16, Theorem 10.2] An admissible representation π of a linear connected reductive
group G has a global character if the multiplicities of each K-type is universally bounded by their
dimension. that is, there is a C > 0, such that nτ < C dim τ for all τ ∈ K̂ in the decomposition 3.43.
In particular, every irreducible admissible representation has a global character.

3.3 Continuous Cohomology and Vanishing Results

In this section we brought cohomological meaning to representations. Given X = G/K with Rieman-
nian volume and Haar measure chosen at Remark 3.4, we want to break L2Ωp(X) into irreducible
unitary representations of G. Now note in view of Cartan decomposition, there is an isomorphism
of homogeneous vector bundles ΛpT ∗X ∼= G ×K Λpp∗, which indeed gives an isomorphism of G-
representations:

L2Ωp(X) = L2(X,ΛpT ∗X) ∼= [L2(G)⊗ Λpp∗]K (3.44)

Now Plancherel formula have already allow us to understand L2(G) by trace of the representation on
it. What we need is to decipher K-invariant space [Vπ⊗Λpp∗]K occurring in Plancherel decomposition.
To understand them we need to first frame them into a cohomological setting, and then we can use
the homology theory tools to yield many vanishing results. These altogether will give the answer to
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L2-Betti numbers directly. For Novikov-Shubin invariants and L2-torsions, this however requires a
closer inspection of the respective representations.

We shall first begin laying the cohomological frameworks.Throughout this section the group will
again be a linear connected reductive group, mostly semisimple. The proofs can largely be retrieved
from [BW13].

The aforementioned properties of admissible representation are so crucial to our ensuing discussions
that we axiomatize them as following:

Definition 3.23. Let G be a linear connected reductive group with K be one of its maximal compact
subgroup. A (g,K)-module (resp. a (g, k)-module) is a real or complex vector space V which is
g-module and a semisimple K-module (resp. semisimple k-module) such that:

1. Every v ∈ V is K-finite (resp. k-finite) module;
2. For all k ∈ K, X ∈ U(g) and v ∈ V , we have π(k) · (π(X)) · v = π(Adk(X))π(k)(v);
3. If F is a K-stable finite-dimensional subspace of V , then the representation of K on F is

differentiable, has π|k as its differential.

Note the second and the third are solely reserved for the (g,K)-case to make sure the compatibility
of two representations. For (g, k)-modules we restrict the module structure of g to k. In particular,
from the above discussions we see for admissible representations V is both a (g, k)-module and a
(g,K)-module.

Now we are ready to define the cochain complex. Fix a representation (π, V ) of g, where the space
V over a field F is often infinite-dimensional. Denote Cq = Cq(g;V ) = Hom(Λqg, V ), with differential
d : Cq → Cq+1:

df(X0, · · · , Xq) =
∑
i

(−1)i · f(X0, · · · , X̂i, · · · , Xq)

+
∑
i<j

(−1)i+j · f([Xi, Xj ], X0, · · · , X̂i, · · · , X̂j , · · · , Xq) (3.45)

Define furthermore the endomorphisms iX , θX respectively by:

iXf(X1, · · · , Xq−1) := f(X,X1, · · · , Xq−1)

θXf(X1, · · · , Xq) :=
∑
i

f(X1, · · · , [Xi, X], · · · , Xq) +X · f(X1, · · · , Xq)
(3.46)

Invoke from differential geometry that d, iX , θX here corresponds to the covariant derivative ∇, the
contraction iX , and the Lie derivative LX on (p, 0)-tensor respectively. Consequently from Cartan’s
magic formula one has θX = d ◦ iX + ix ◦ d. Further define:

Cq(g, k;V ) := {ϕ ∈ Cq(g;V ) | ∀x ∈ k, iXϕ = θXϕ = 0} (3.47)

One can then readily check this is a submodule stable under d. Consequently one can define rel-
ative cohomology groups Hq(g, k;V ). One can also identify the relative cochain complex with
Cq(g, k;V ) = Homk(Λ

q(g/k), V ), where k acts on Λq(g/k) via adjoint representation induced on g/k,
i.e, for X ∈ k, and Xi ∈ g/k,

X · f(X1, · · · , Xq) =
∑
i

f(X1, · · · , [X,Xi], · · · , Xq) (3.48)

It is straightforward to check this is a (g, k)-module.
Analogously we can define Cq(g,K;V ) := HomK(Λq(g/k;V )) with K acts again via adjoint rep-

resentation. Take K0 to be the identity component of K, then derivative at e and exponential map
gives a isomorphism HomK0(Λ

q(g/k);V ) ∼= Homk(Λ
q(g/k);V ) where K/K0 acts naturally on the left.

Consequently, we see Cq(g, k;V )K/K0 = Cq(g,K;V ) since the action clearly commutes with d, we have
Hq(g,K;V ) = Hq(g, k;V )K/K0 .

50
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Remark 3.5. (g, k)-cohomology can be related to differential form in the following sense: If we take
F = R and let K be a closed connected subgroup of G, with respective Lie algebras g and k. Now if V
is a smooth G-module, then an element of Cq(g, k;V ) = Homk(Λ

q(g/k), V ), defines an q-form on G/K
at eK. Since G acts transitively on G/K, this then induces a G-invariant q-form ω ∈ Ωq(G/K;V ).
Conversely, ω evaluates at e gives an element in Cq(g, k;V ). Hence we have a graded isomorphism
from G-invariant differential forms Ω∗(G/K;V )G onto C∗(g, k;V ). In particular, when G is compact,
we have then H∗(g, k;V ) = H∗

dR(G/K;V ) since all forms in such case can be made G-invariant by
averaging the inner product over G.

We can more generally define abelian categories of (g, k)-modules and (g,K)-modules with enough
projectives and injectives. Consequently one can define Ext-functors Extqg,k(U, V ) and Extqg,K(U, V ) as
the derived functors of Homg(U, V ) = Homg,k(U, V ) and of Homg,K(U, V ) respectively. For details see
[BW13, Chapter 1, §2].

Now by appealing to general theory as in [CE16, Chapter IX, Corollary 4.4], we see:

Extqg,k(F,HomF (U, V )) = Extqg,k(U, V ) (3.49)

for any (g, k)-modules U, V . Now we need to identify the left-hand side with Hq(g, k;V ):

Lemma 3.24. When F is a field of characteristic zero and k if reductive in g, then for any (g, k)-
module:

Hq(g, k;V ) = Extqg,k(F,HomF (F, V )) = Extqg,k(F, V ) (3.50)

Proof. By taking Xq := g⊗k Λ
q(g/k), we define an projective resolution of F :

· · · Xq · · · X0 F 0
∂q ∂1 ϵ (3.51)

with ϵ : X0 → F the augmentation and ∂q : Xq → Xq−1 the same way as 3.45. Note each Xq are
projective since it follows from [BW13, Chapter I, §2.4] that for each (g, k)-module V , the induced
module g ⊗k V is projective.4 Consequently we see the above chain is exact, and then defines a
projective resolution of F . Now Homg(Xq, V ) = Homk(Λ

q(g/k), V ) by Frobenius Reciprocity, and
from the definition of Cq(g, k;V ) we see the claim of the lemma readily follows.

The above construction can be analogously extended to Ext-functor in the category of (g,K)-
module. From the definition we can easily derive that Homg,K(U, V ) = Homg,K0(U, V )K/K0 . Conse-
quently apply this to the projective resolution, and we have:

Extqg,K(U, V ) = (Extq
g,K0(U, V ))K/K0 = Extqg,k(U, V )K/K0 (3.52)

The last thing we need before stating our first vanishing theorem is the dual structure (g,K) and
(g, k)-structure on the dual vector space V ′. Note V ′ does not remain to be a (g,K)-module mostly,
so we need a suitable subspace.

Definition 3.25. Given (π, V ) now a (g,K)-module, we then define contragredient (g,K)-module
to V be the space of K-finite vectors in V ′, with the contragredient representation π̃ be π̃(x) :=
πt(−x) of x ∈ g, where πt the transpose of π. Similarly for (g, k)-module W we define contragre-
dient (g, k)-module to W be the space in V ′ spanned by all k-finite dimensional subspaces, with
contragredient representation.

4Reader is to note here the k-module structure of g is induced by adjoint representation.Moreover, as a byproduct
of the proof, one see the k-module structure given by right multiplication on g-component coincide with the induced
k-module structure on tensor product via adjoint representation on g-component and intrinsic k-module structure on U
itself.
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Theorem 3.26. [BW13, Theorem 4.1& Theorem 5.3] Let U, V be two (g, k)-modules (resp. (g,K)-
modules) with infinitesimal characters χU , χV respectively. If χU ̸= χV , then the Ext-groups Extq(U, V )
and Extqg,K(U, V )) vanish for all q’s respectively. In particular, if U is finite dimensional and χ

Ũ
̸= χV ,

then Hq(g, k;U ⊗ V ) and Hq(g,K;U ⊗ V ) vanish for all q’s respectively.

Sketch of Proof. We skip proof of the first part. Roughly speaking, when two representations have
different infinitesimal characters, then one can find an element z ∈ Z(gC) that ‘separates’ two func-
tional such that χV (z) = 0, and χU (z) = 1, then one proves that Z(gC) act on Extq(U, V ) via left
multiplication is independent of its action on U, V respectively. Consequently we have the desired
result.

Assuming the first part, the second part follows readily by observing Ũ = U ′ due to finite dimen-
sionality, therefore from Lemma 3.24 and 3.49

Hq(g, k, U ⊗F V ) = Hq(g, k,HomF (U
′, V )) = Extqg,k(U

′, V ) (3.53)

Now we are to discuss a special case of vanishing theorem where Ω plays an essential role. Let
V = H⊗E, with (ρ,E) is a finite-dimensional continuous representation of G, and (σ,H) is a unitary
(g, k)-module, that is H is a pre-Hilbert space on which g acts as formally skew-adjoint operators. Then
τ = σ ⊗ ρ is the tensor product of representation on H ⊗ E given by τ(x) = σ(x)⊗ idE + idH ⊗ρ(x).
Take K with Lie algebra k to be a maximal compact subgroup of G, then by Cartan decomposition
we have

Cq(g, k;V ) = Homk(Λ
qp, V ) = (Λqp∗ ⊗ V )k (3.54)

Meanwhile, since [p, p] ⊆ k, we have the second term in 3.45 vanishes, and to stress the representation
π, we write

df(X0, · · · , Xq) =
∑
i

(−1)iπ(Xi) · (f(X0, · · · , X̂i, · · · , Xq)) (3.55)

Now endow E with an admissible scalar product, i.e., one which k acts via skew-adjoint operators
and p acts as self-adjoint operators. To see one can always do such with finite-dimensional repre-
sentations, first lift the representation to gC on V using the intrinsic complex structure on V . Then
restrict to k⊕ ip, which is the Lie algebra associated to the compact dual. Now applying the averaging
argument to Gd to get a unitary representation on V , then we left the reader to check it is the desired
scalar product. Consequently we can give V the tensor product representation⟨, ⟩H ⊗ ⟨, ⟩E , and recall
the scalar product on Λqp∗ is induced by B(−,−), which is positive definite on p. (c.f. Definition 3.17)

Now we can accordingly define an adjoint representation τ∗ of g with respect to ⟨−,−⟩V , then we
see τ∗(k) acts as skew-adjoint operators, and:

τ∗(X) = idH ⊗ρ(X)− σ(X)⊗ idE if X ∈ p (3.56)

Now we may define a dual differential δ : Cq(g, k;V )→ Cq−1(g, k;V ) by:

δη(X0, · · ·Xq) =

m∑
j=1

τ∗(Yj)(η(Yj , X0, · · · , Xq)) (3.57)

where Yj is a orthogonal basis of p with respect to the real part of trace form. We leave the reader to
check δ(Cq) ⊆ Cq−1 and moreover for each η ∈ Cq, µ ∈ Cq−1, one has ⟨δη, µ⟩ = ⟨η, dµ⟩.

Naturally we now define the Laplacian of the chain complex C∗(g, k;V ): ∆ = dδ + δd, then the
following lemma shows the Laplacian in such case is essentially the Casimir element as defined in
Definition 3.17:
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Theorem 3.27 (Kuga’s Lemma). Let τ = σ ⊗ ρ and view V as a (g, k)-module under τ , with
corresponding Laplacian ∆τ . Then:

∆τη = (ρ(Ω)− σ(Ω)) · η (3.58)

where Ω is the Casimir element.

Proof. See [BW13, Chapter II, Theorem 2.5]. The proof is elementary.

Now we have the vanishing of cohomology totally determined by Casimir element in case of irre-
ducible admissible representations:

Proposition 3.28. Assume that σ(Ω) = s · idH and ρ(Ω) = r · idE, (This is in particular the case
when H is an irreducible admissible representation and E is furnished with g-invariant metric), then:

1. If r ̸= s, then Hq(g, k;H ⊗ E) = 0 for all q’s;
2. If r = s, then all cochains are closed, harmonic, and we have:

Hq(g, k;H ⊗ E) = Cq(g, k;H ⊗ E) for all q’s

3. If (ρ,E) is further irreducible, then H∗(g, k;E) = 0 if ρ is nontrivial, and Hq(g, k;E) = Cq(g, k;E)
for all q’s if ρ is trivial representation.

4. If HK is the space of K-finite vectors in an irreducible admissible representation H of G. Then
Hq(g, k;HK) = Homk(Λ

qp,HK) if σ(Ω) = 0; and H∗(g, k;HK) vanish if otherwise.

Proof. First by Kuga’s Lemma we have ∆τ = (r− s) · idH⊗E on C∗(g, k;H ⊗E). Hence if r ̸= s, then
for η ∈ Cq such that dη = 0, then ∆η = dδη. Then η = (r − s)−1 · dδη, hence is a coboundary, and
hence we have the first part.

When on the other hand r = s, then ∆ = 0, then argue as in Lemma 2.20 one has dη = δη = 0 for
all η ∈ Cq for all q. Hence the second part.

Now if ρ is irreducible, then we have by Schur’s Lemma, ρ(Ω) = r · id, also note that by [Kna13,
Proposition 5.28(c)] we have r = 0 if and only if ρ is trivial representation. Hence the third statement
readily follows by taking σ to be trivial representation. The last statement is straightforward.

From now on we want to focus on the (g,K)-cohomology when V is a discrete series representation
or induced representations (πλ,iν ,H

λ,iν) as occurring in Plancherel formula. To prepare this, we first
need to better understand the infinitesimal characters, and second to discuss its interplay with discrete
series and induced series respectively.

As observed by Harish-Chandra [HC51], the infinitesimal character is completely determined by a
functional on some Cartan subalgebra hC. In fact he constructed an explicit homomorphism:

Definition 3.29. We define the Harish-Chandra homomorphism to be an homomorphism γ :
Z(gC)→ U(hC) such that for all Z ∈ Z(gC) and Λ ∈ (hC)∗:

γ(Z)(Λ) = γ′∆+(Z)(Λ− δG) (3.59)

where γ′∆+ is the projection fo Z(gC) onto U(hC) ∩ Z(gC), and δG = 1
2

∑
α∈∆+ α the half sum of

positive roots.

Theorem 3.30. [Kna16, Theorem 8.18] γ is an algebra isomorphism of Z(gC) onto the subalgebra
(U(hC))W of U(hC) containing all those elements fixed by algebraic Weyl group W := W (hC : gC).
Moreover, the homomorphism is solely dependent on choice of Cartan subalgbera hC and is independent
of choice of positive system ∆+.
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So now for any γ ∈ (hC)∗, we can define χΛ as a linear functional on Z(gC) using Harish-Chandra
homomorphism as:

χΛ(z) = Λ(γ(z)) for z ∈ Z(gC) (3.60)

by extending Λ to a linear functional on U(hC) via universal property. Now it turns out all linear
functional on Z(gC) are characterized in this way:

Theorem 3.31. [Kna16, Proposition 8.20 & 8.21] Every homomorphism from Z(gC) to C is of the
form χΛ for some Λ ∈ (hC)∗. Moreover, if χΛ1 = χΛ2, then Λ1 = wΛ2 for some w ∈W (hC : gC).

This in turn gives us more information about discrete series in Theorem 3.13 and principal series,
namely those series induced from parabolic subgroup in the way as in Definition 3.14, as listed below:

Theorem 3.32. [Kna16, Theorem 9.20 & Corollary 12.22] Let G and the Harish-Chandra parameter
λ as in Theorem 3.13, then for λ ∈ (ib)∗ nonsingular and λ + δG analytically integral, we have the
associated discrete representation πλ has the following properties:

1. πλ has infinitesimal character χλ;
2. πλ|K contains with multiplicity one the K-type with highest weight Λ = λ+ δG − 2δK ;
3. If Λ′ is the highest weight of a K-type in πλ|K , then Λ′ is of the form: Λ′ = Λ+

∑
α∈∆+ nαα for

integers nα ≥ 0.
4. Any given K-type µ occurs in only finitely many discrete series;
5. The trivial K-type appears in no discrete series unless G is compact.

Remark 3.6. In particular, when G is itself compact, we see the infinitesimal character of an irre-
ducible representation V is Λ + δG with Λ the highest weight of V . This can either seen from the
theorem above or as a product of Theorem of the Highest Weight (c.f.[Kna13, Theorem 5.5]).

Proposition 3.33. [Kna16, Proposition 8.22] Let MAN be a parabolic subgroup of G, with t a θ-stable
Cartan subalgebra of m, and let σ be an irreducible unitary representation V of M with infinitesimal
character λσ with respect to tC. Now if ν ∈ (aC)∗, then the induced representation πσ,ν in Defini-
tion 3.14 has infinitesimal character λσ + ν ∈ ((a⊕ t)C)∗.

These additional information, together with Theorem 3.26, then gives us our third vanishing
theorem:

Theorem 3.34. [BW13, Chapter II, Theorem 5.3] Given (πλ, Vλ) be a discrete series representation
with Harish-Chandra parameter λ. Let H be the (g,K)-module of K-finite vectors in V , and (σ,E)
be an irreducible finite-dimensional representation of G. Then:

1. If the highest weight of (σ,E) relative to ∆+ is not λ− δG, then Extig,k(E,H) = 0 for all i;

2. If the highest weight of (σ,E) is λ− δG, then dimHomk(Λ
ip⊗E,H) = 1 if i = dim(G/K)

2 ; and it
vanishes if otherwise.

Remark 3.7. As a side remark, we note an irreducible finite-dimensional representation V of g, which
is of course admissible, has infinitesimal character λ = Λ+ δG, with δG the half sum and Λ the highest
weight of V . This is a byproduct of Harish-Chandra map(c.f. [Kna13, Proposition 5.42ff])

Proof. The first part is a direct consequence of Theorem 3.26 and Theorem 3.32. Since χ(πλ) = λ
and χσ = Λσ + δG, where Λσ is the highest weight of (σ,E).

As for the second part, first note:

Extig,k(E,H) = H i(g, k;E∗ ⊗H) = Homk(Λ
ip⊗ E,H) (3.61)

To compute the dimension of right hand side, we first observe the weights of ΛipC ⊗ E.
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3.3. CONTINUOUS COHOMOLOGY AND VANISHING RESULTS

Let ∆n := ∆−∆K the set of noncompact roots and define ∆+
n = ∆n ∩∆+. By considering the

adjoint representation of g on ΛipC, since adb preserves Cartan decomposition in our case, we see the
weights are sums of noncompact roots. Consequently by rewriting as difference of sums of positive
roots and take δn = δG − δK , we see the weights of ΛipC are of the form 2δn −Q with Q the sum of
elements in ∆n, the highest weight module being ΛqpC of multiplicity one by basic properties of root
space decompositions. (c.f.[Kna16, Proposition 4.1]) For E we have a similar result. By Theorem of
Highest Weight (c.f.[Kna13, Theorem 5.5]) we see the weights of E are λ − δG − Q′ for some Q′ the
sum of positive roots, with the highest weight λ− δG of multiplicity one.

Consequently, we see only the weights of ΛipC ⊗ E are 2δn + λ − δG −Q′′ = λ + δG − 2δK −Q′′,
with Q′′ = 0 if i = q, and in such case the height weight λ+ δG − 2δK of multiplicity one. Now from
Theorem 3.32 and the fact K-homomorphism preserves K-type, that

dimHomK(ΛqpC ⊗ E, Vλ) = 1 (3.62)

where Vλ is the discrete series of G with infinitesimal character λ, and have unique K-type of highest
weight λ+ δG − 2δK .

Lastly we want to calculate the (g, k)-cohomology for induced representation πλ,iν as appeared in
Plancherel formula. This part is rather technical, which involves a use of Hochschild-Serre spectral
sequence [BW13, Theorem 6.5] to cuspidal parabolic subgroup p. For the simplicity of discussion
we omit the details here and satisfied with a full statement without proof. For details the reader is
referred to [BW13, Chapter III, Theorem 3.3 &Theorem 5.1].

We again begin with a Θ-stable Cartan subalgebra h of g, we consider t := h∩ k and a := h∩ p the
Cartan subalgebra of k and p respectively. Recall now Proposition 3.33 shows an induced representation
σ⊗ exp ν ⊗ 1 from parabolic subgroup P =MAN can be written as an element λσ + ν of (hC)∗, with
λσ the infinitesimal character of σ. Take now Wg :=W (hC : gC), and we define

Ξ := {λσ ∈ (bC)∗ | −δG ∈Wg · (λσ + ν)} (3.63)

where Wg· denotes the adjoint action of Weyl group on (hC)∗. With slight abuse of notation, we can
identify Ξ as a subset of all discrete series of M .

Theorem 3.35. [BW13, Chapter III,Theorem 5.1] Let (πλ,iν ,Hλ,iν) be the induced representation in
Plancherel formula. Then H∗(g,K;Hλ,iν

K ) ̸= {0} only if P is fundamental, ν = 0, and λ ∈ Ξ, and:

dimHp(g,K;Hλ,0
K ) =

{(
m

p−n−m
2

)
if p ∈ [n−m2 , n+m2 ]

0 if otherwise.
(3.64)
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3.4 L2-invariants of Symmetric Spaces

From now on let X = G/K be a Riemannian symmetric space of the noncompact type. Here G is
a real linear connected semisimple Lie group without compact factors. Let Γ be a group acts freely,
properly and cocompactly on X, then Γ\X is a compact locally symmetric space. Moreover, we can
identify Γ with a torsion-free lattice of G, i.e., a discrete subgroup that acts cocompactly. Then we
have the following vanishing theorem:

Theorem 3.36. [Olb02] Let n = dimX and m(X) := rankC(G) − rankC(K) be the fundamental
rank of G. Then:

I b
(2)
p (X;N (Γ)) ̸= 0 if and only if m(X) = 0 and p = n

2 . In this case,

b
(2)
n
2
(X) = (−1)

n
2 χ(X) =

vol(Γ\X)

vol(Xd)
χ(Xd) (3.65)

II αp(X;N (Γ)) ̸=∞+ if and only if m > 0 and p ∈ [n−m2 + 1, n+m2 ]. Within this range,

αp(X;N (Γ)) = m (3.66)

III ρ(2)(X) ̸= 0 if and only if m(X) = 1.
IV Suppose further m(X) = 1, then X = X0 ×X1, where X0 is a symmetric space of non-compact

type with m(X0) = 0, and X1 = Xp,q := SO(p, q)0/SO(p) × SO(q) for p, q odd or X1 =
SL(3,R)/SO(3). In such case, the L2-torsion of X is correlated to the volume of Γ\X by:

ρ(2)(X) = vol(Γ\X) · T (2)(X) (3.67)

where T (2)(X) is a constant given by:

(a) Let Xd
0 the compact dual of X0, then:

T (2)(X) := (−1)dim(X0)/2 · χ(X
d
0 )

vol(Xd
0 )
· T (2)(X1) (3.68)

(b) T (2)(Xp,q) = (−1)
pq−1

2 χ(Xd
p−1,q−1)

πCp+q−1

vol(Xd
p,q)

, where Cp+q−1 is a constant defined as:

Cd :=

n−1∑
j=0

(−1)n+j+1 n!

(2n)!πn

(
2n

j

)
·
n∑
k=0

Kn
k,j ·

(−1)k+1

2k + 1
· (n− j)2k+1 (3.69)

with Kn
k,j the integer coefficients at degree 2k of the polynomial Pnj (x) :=

∏n
i=0(x

2+i2)
x2+(n−j)2 .

(c) If X1 = SL(3,R)/SO(3), then:

T (2)(SL(3,R)/SO(3)) =
π

2 · vol(Xd)
(3.70)

If the invariant metric on X is induced from twice the trace form of the standard represen-
tation of sl(3,R), then vol(Xd) = 4π3, and hence T (2)(X) = 1

8π2 .
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We begin our proof of our theorem by first reinterpreting Plancherel formula using representation
data. Denote Ĝ as the equivalence classes of irreducible unitary representations, we first want to recall
the abstract Plancherel formula, the idea of which dates back to von Neumann:

Theorem 3.37. [Dix82, Theorem 18.8.1] Let G be a linear connected semisimple group.5 Let λ be the
left-regular representations of G. Then there exists a positive measure µ on Ĝ and an isomorphism
W :

W : L2(G) ∼=
∫
Ĝ
Hπ ⊗H∗

π dµ(π) λ ∼=
∫
Ĝ
π ⊗ idH∗

π
dµ(π) (3.71)

where H∗ is the dual Hilbert space of H. There is a complete analog for right regular representations.

Now we recall Kuga’s Lemma, which in our case τ = λ is the left-regular representation. Hence
under the identification L2Ωp(X) ∼= [L2(G)⊗Λpp∗]K , we see ∆p = −[λ(Ω)⊗ idΛpp∗ ]

K , with right hand
side the induced map at K-invariant level. This together with 3.71 gives:

∆p = −
∫
Ĝ
π(Ω)⊗ id[H∗

π⊗Λpp∗]K dµ(π) (3.72)

Now we turn to the explicit formula as given in Plancherel formula, note it in particular says µ is
supported in a subset of Ĝ which is parametrized by principal series induced from parabolic subgroups.
Moreover, by Theorem 3.20 we see Ω acts on each element of Ĝ as scalars, whence we can take Ω as
a scalar function on Ĝ.

More explicitly write X = Xa+Xm+Xn ∈ a⊕m⊕n with respect to the Langlands decomposition,
and also n acts trivially, we have:

πλ,iν(X) ◦ f(1) = d

dt
◦ f(exp(tX)−1)

∣∣
t=0

=
d

dt
(eiν+ρa ⊗ σ ⊗ 1)(exp tX) ◦ f(1)

∣∣
t=0

= ((iν + ρa)(Xa) + σ(Xm))f(1)
(3.73)

Moreover, we note with regard to Killing form B(−,−) we can choose a basis of m and consequently
construct the respective Casimir element ΩM for M . Consequently we have:

πλ,iν(Ω) = −⟨iν, iν⟩ − ⟨ρa, ρa⟩+ σ(ΩM ) = −∥ν∥2 − ∥ρa∥2 + πλ(ΩM ) (3.74)

where πλ is the discrete series of M with infinitesimal λ. This together with 3.72, gives the following
lemma:

Lemma 3.38. Using the notations and settings of Plancherel formula, and take Pj = MjAjNj the
Langlands decomposition of cuspidal parabolic subgroup Pj constructed from the θ-stable Cartan
subalgebra Hj (c.f. Remark 3.1), then we have:

trN (Γ) e
−t∆p = vol(Γ\X)

s∑
j=1

∑
λ∈M̂d

∫
a∗
e−t(∥ν∥+∥ρa∥−πλ(ΩM )) dim[Hλ,iν ⊗ Λpp∗]Kpξ(iν) dν (3.75)

Proof. First note the heat kernel e−t∆p(x, y) is G-invariant, since G-acts isometrically on X = G/K,
hence we have e−t∆p(xK, yK) := hpt (y

−1x) is a smooth function on G. We know from general theory
that it is a Schwartz function, and it is K-bi-invariant, i.e., hpt ∈ [C(G)⊗End(Λp)]K×K . Moreover, for
f ∈ L2Ωp(X), we have:

e−t∆pf(g0) =

∫
G
hpt (g

−1g0)f(g) dg (3.76)

Consequently we have tr e−t∆p(x, x) = trhpt (e) for any x ∈ X. On the other hand, by 3.72 we have:

e−∆p =

∫
Ĝ
e−tπ(Ω) ⊗ id[H∗

π⊗Λpp∗]K dµ(π) (3.77)

Now from 3.74 we derive the formula.
5In the original text it assumes a larger class of groups, i.e., unimodular postliminal separable locally compact group,

which in particular the class of our concern.
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Proof of Theorem 3.36.I. We begin our proof on L2-Betti numbers, which only depend on discrete
spectrum. First observe that the L2-eigenspaces of Laplacian coincide with all the twisted discrete
series representation, i.e.:

L2(X,ΛpT ∗X)d ∼=
⊕
π∈Ĝd

Hπ ⊗ [H∗
π ⊗ Λpp∗]K (3.78)

To see this, we first note Ω acts on discrete series and principal series as scalars. Moreover, as a by-
product of Plancherel formula, we note each discrete series take non-zero Plancherel measure, whence
all discrete series are eigenspaces of Laplacian. On the other hand, by 3.74 we see for fixed eigenvalue
λ, we have only finite values of ν, the principal series Hσ,iν of which the Casimir operator Ω takes
value λ. Now Remark 3.4 says dν is Lebesgue measure, whence all such spaces are of measure zero.
Summing up, we have the desired result.

Now by 4. of Proposition 3.28 it suffices to consider all those discrete series Hπ on which Ω acts on
Hπ as trivially. This in particular says 0 is the only discrete spectrum. Now the non-vanishing result
of such discrete series is given by Theorem 3.34, which we take E = C the trivial representation of G,
which has highest weight 0. Arguing backwards, we have:

dim[H∗
π ⊗ Λpp∗]K =

{
1 if p = dimG−dimK

2 and χπ = δG

0 if otherwise
(3.79)

In the case when Ĝd ̸= ∅, such discrete series representation always exists, since one can trivially check
δG is non-singular and 2δG is analytically integral, that is the L2-kernel at degree p := dimX

2 always
exist. Summing up, we have:

b
(2)
n/2(X;N (Γ)) = (−1)

dimX
2 χ(2)(X) (3.80)

where χ(2)(X) :=
∑n

i=0(−1)ib
(2)
i (X) the L2-Euler characteristic. Now we claim L2-Euler characteristic

of a free finite Γ-CW complex coincide with the cellular L2-Euler characteristic of Γ\X. This follows
from the fact von Neumann dimension is additive with respect to exact sequences, and we could hence
express the cellular Euler characteristic in terms of the alternating sum of number of p-cells, and note
dimN (Γ)(Cp(X)) = dimC(Cp(Γ\X;C)). Consequently, we have:

b
(2)
n
2
(X) = (−1)

dimX
2 χ(Γ\X) =

vol(Y )

vol(Xd)
χ(Xd) (3.81)

where the last equality follows form Hirzebruch Proportionality. Hence we have finished the proof of
part I.

As a byproduct of this proof, we have yielded some discrete spectral information, which we sum-
marized here:

Corollary 3.39. The discrete spectrum of ∆p on L2(X,ΛpT ∗X) is empty unless m(X) = 0 and
p = dimX/2. In this case 0 is the only eigenvalue of ∆p.

Remark 3.8. Recall Lemma 2.3 that dF∆
p is a Borel measure, hence by decomposition of measure

and the fact that ∆p is essentially self-adjoint, so there is no singular spectrum:

dF∆
p = dF∆disc

p + dF∆cont
p (3.82)

where ∆disc and ∆cont are respectively the discrete and continuous spectrum of the Laplacian. Then
the above corollary gives in particular:

dF∆
p = χ0F

∆
p (0) + dF∆cont

p (3.83)

with χ0 the Dirac measure at 0.
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We now prove the part on Novikov-Shubin invariants. By Lemma 1.8 we have (δpmin)
⊥ = ((dp−1

min )
⊥)∗,

this together with Lemma 2.2 and Lemma 2.5 gives λ ≥ 0:

Fp(X)(λ) := F ((dp⊥min))(λ) = F ((dp⊥min)
∗dp⊥min))(λ

2) = F ((δp+1dp)⊥min)(λ
2)

Moreover, we recall F (f) and F (f) − b(2)(f) give the same Novikov-Shubin invariant. For this sake
we suffices to study just the asymptotic behaviour of Fp(X)(λ)− b(2)p (X).

The next is to observe (∆p)min|Im(dp−1
min )

⊥ = (δp+1dp)⊥min. Now since (ker dp)⊥ ⊆ (Im dp−1)⊥, we
conclude from above discussions that:

αp+1(X) = α(F (dp⊥min)) = 2 · α
(
F (δp+1dp)⊥min − b(2)p (X)

)
= 2 · α

(
F (∆p)min|(ker dpmin)

⊥

)
(3.84)

Denote ∆⊥
p = (∆p)min|(ker dpmin)

⊥ . We see ∆⊥
p is again an self-adjoint operator. Using the same

argument of Remark 2.4 and Proposition 2.13 we define analogously θ⊥p (t) :=
∫∞
0 e−tλ dF (∆⊥

p )(λ)

and see θ⊥p (t) = trN (Γ) e
−t∆⊥

p . Moreover, if αp+1 ̸=∞+, i.e, when there is no gap on the spectrum of
∆⊥
p around 0, we have:

− 1

2
· αp+1(X) = lim

t→∞

θ⊥p (t)− F (∆⊥
p )(0)

ln(t)
= lim

t→∞

trN (Γ) e
−t∆⊥

p − F (∆⊥
p )(0)

ln(t)
(3.85)

So now in view of Theorem 3.37 it suffices to consider what is the restriction of domain on the
representation side. By mimicking the argument of Lemma 3.38 we respectively associate with e−t∆⊥

p

a function hp⊥t ∈ [C(G)⊗ End(Λpp∗)]K×K .
Recall the isomorphism L2(X,ΛpaT ∗X) ∼= [L2(G)⊗Λpp∗]K and consider the left regular represen-

tation of G on L2(G). This allows us to define on the chain complex of L2 p-forms d and δ as in 3.55
and 3.57.6 Altogether we have a commutative diagram (at a formal level):

(ker dpmin)
⊥ (ker dpmin)

⊥

(L2(G)⊗ Λpp∗)K (L2(G)⊗ Λpp∗)K

∆⊥
p

(λ(G)⊗idΛpp∗ )
K

(3.86)

Consequently we have ∆⊥
p = Pp ◦ [λ(G) ⊗ idΛpp∗ ]

K with Pp : L2Ωp(X) ↠ ker(dpmin)
⊥ the orthogonal

projection. This together with the above commutative diagram and 3.72 gives:

∆⊥
p =

∫
Ĝ
π(Ω)⊗ Pp,π dµ(π) (3.87)

where Pp,π : [H∗
π ⊗ Λpp∗]K →

(
ker dpπ : [H∗

π ⊗ Λpp∗]K → [H∗
π ⊗ Λp+1p∗]K

)⊥ the orthogonal projection.
Consequently, we argue like Lemma 3.38 and get:

trN (Γ) e
−t∆⊥

p = vol(Y )
∑
P

∑
λ∈M̂d

∫
a∗
e−t(∥ν∥

2+∥ρa∥2−πλ(ΩM )) dim[ImPp,(λ,iν)]pλ(iν) dν (3.88)

Note when m = 0, we have the compact cuspidal parabolic group P = G. In such case we deduce
from 3.79 all dpλ = 0, whence we can refine the formula to be:

trN (Γ) e
−t∆⊥

p = vol(Γ\X)
∑
P ̸=G

∑
λ∈M̂d

∫
a∗
e−t(∥ν∥

2+∥ρa∥2−πλ(ΩM )) dim[ImPp,(λ,iν)]pλ(iν) dν (3.89)

6One should caution that the differential and co-differential are defined formally, since L2(G)K is itself not K-locally
finite, hence {L2(X,ΛpT ∗X)}p does not give a chain of (g,K)-modules.
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Proof of Theorem 3.36.II. First note dpλ,iν |(ker dp−1
λ,iν)

⊥ is injective, so:

dim(ImPp,(λ,iν)) = dim(Im dpλ,iν) (3.90)

In view of 3.89 it suffices to consider the case when dpλ,iν is nontrivial. For fixed λ,there are two cases:

The first case is if for all ν ∈ a∗, we have dpλ,iν ̸= 0 andHp(g,K,Hλ,iν
K ) = Hp([Hλ,iν⊗Λ⋆p∗]K , dλ,iν) =

0. In such case we have by 4. of Proposition 3.28 and 3.74 that:

inf
ν∈a∗

πλ,iν(Ω) = inf
ν∈a∗

(∥ν∥2 + ∥ρa∥2 − πλ(ΩM )) ̸= 0 for all ν ∈ a∗ (3.91)

Now since ∥ν∥2+∥ρa∥2−πλ(ΩM ) is a quadratic polynomial of ∥ν∥ which obviously takes value greater
than 0, we see it is closed map and consequently infν∈a∗∥ν∥2+∥ρa∥2−πλ(ΩM ) > 0. In view of 3.89 this
part is upper bounded when t tends to infinity, hence not contributed to our computation of αp+1(X).
In particular, we see if for all proper parabolic subgroup P and for all respective λ the cohomology
vanishes, then we have a gap in spectrum and ∆⊥

p , which means αp+1(X) =∞+.

So it suffices to consider the second case, that is those λ for which Hp(g,K,Hλ,iν
K ) ̸= 0 for some

ν ∈ a∗. By Theorem 3.35 this only happens to the case when P is fundamental and λ ∈ Ξ. In this case
Proposition 3.28 shows πλ,0(Ω) = 0. Moreover, inspecting the definition of induced representation one
see Hλ,iν and Hλ,0 are differed by scaling, and have same action of K that is governed by K ∩M .
Hence they have the same K-finite dimension, that is:

dim[Hλ,iν ⊗ Λpp∗]K = dim[Hλ,0 ⊗ Λpp∗]K = dimHp(g,K,Hλ,0
K ) (3.92)

Moreover, the right hand side is computed explicitly in Theorem 3.35. But on the other hand, we see
left hand side of the equation have vanishing cohomology, hence dim[Hλ,iν⊗Λpp∗]K = dim(Im dpλ,iν)+

dim(Im dp−1
λ,iν) for ν ̸= 0. Hence computing inductively, we have:

dim(ImPp,(λ,iν)) =

{( m−1
p−n−m

2

)
if p ∈ [n−m2 , n+m2 − 1]

0 if otherwise
(3.93)

Subbing this result in 3.89 and summarize all the discussion, we suffices to compute the power of the
leading term of:

vol(Γ\X)

(
m− 1

p− n−m
2

)∑
λ∈Ξ

∫
a∗
e−t∥ν∥

2
pλ(iν) dν

Now it suffices to ascertain the Plancherel measure pλ(iν) for ξ ∈ Ξ. Since P is fundamental, we recall
here the second part of Plancherel formula that:

pλ(iν) = C(−1)
dim n1

2

∏
α∈∆+

⟨λ+ iν, α⟩
⟨ρg, α⟩

(3.94)

is a polynomial of degree dim n. Hence pλ(iν) is nonnegative for ν ∈ a∗. Now by the definition of Ξ
in 3.63 we see λ ∈ Wg · (−δG) ∩ b∗, hence we have in particular

∏
α∈∆+⟨λ, α⟩ =

∏
α∈∆+⟨ρg, α⟩ when

λ ∈ Ξ. In such case pλ(0) = ±C. Since pλ is nonnegative on ia∗, we have pλ(0) > 0.

To finish our proof, now we suffices to break pλ =
∑dim n/2

k=0 pλ,2k into homogeneous polynomials.
Now since the exponential part only depends on the radius ∥ν∥, which we use spherical coordinate,
and note ν ∈ Rdim ap . When P is fundamental, dim ap = m. So we have the following change of
coordinate by taking R = ∥ν∥:∫

a∗
e−t∥ν∥

2
pλ(iν) dν =

dim n/2∑
k=0

∫
∥ν∥=1

pλ,2k(ν) dν

∫ ∞

0
e−t·R

2
R2k(Rm−1 dR)

=

dim n/2∑
k=0

Cλ,k · t−
m+2k

2
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Moreover, we see for all λ ∈ Ξ, Cλ,0 > 0, since
∫
∥ν∥=1 pλ(0) dν > 0. Hence we see the leading term of

trN (Γ) e
−t∆⊥

p is a non-zero multiple of t
m
2 as t→∞ and p ∈ [n−m2 , n+m2 − 1]. So now bring this back

to 3.89 and together with 3.85 we have the desired result that αp+1(X) = m in this range.

Now we started proving the last of three L2-invariants, namely the L2-torsion. First recall Poincaré
Duality that the L2-torsion of an even-dimensional manifold vanish. Consequently, we suffices to
consider the case n is odd. Since n and m have the same parity, we have m is odd and is in particular
greater than 0. Hence ∆p have no discrete spectrum by I of Theorem 3.36. Retaining the notation of
2.30, we have for T (2) := ρ(2)(X)

vol(Γ\X) :

T (2)(X) =
d

ds

∣∣∣
s=0

( 1

Γ(s)

∫ ϵ

0
kX(t) · ts−1 dt

)
+

∫ ∞

ϵ
kX(t) · t−1 dt (3.95)

where:

kX(t) :=
1

2 vol(Γ\X)

n∑
p=0

(−1)p · p · θ⊥p (t) =
1

2 vol(Γ\X)

n∑
p=0

(−1)p · p · θp(t) (3.96)

is the main part we would like to investigate. To start with, we want to use a slightly different version
of 3.38 by stressing the parabolic subgroup. Note KM := K ∩M is the maximal compact subgroup
of M . Now we recall the induced representation Hσ,ν . The restriction of G to K is gives a dense
subspace:

{F ∈ C(K,V σ) | F (km) = σ(m)−1F (k) for k ∈ K,m ∈ KM} (3.97)

Note this restriction is one-to-one since G = KMAN . Hence we can also view Hσ,ν = indKKM
σ an

induced representation of K from KM . Consequently, by Frobenius Reciprocity we have:

[Hλ,iν ⊗ Λpp∗]K ∼= [V λ ⊗ Λpp∗]KM (3.98)

Taking this into Lemma 3.38 we have a new formula of trN (Γ) e
−t∆p :

trN (Γ) e
−t∆p = vol(Γ\X)

s∑
j=1

∑
λ∈M̂d

∫
a∗
e−t(∥ν∥+∥ρa∥−πλ(ΩM )) dim[V λ ⊗ Λpp∗]KMpλ(iν) dν (3.99)

Moreover, from 2. and 4. of Theorem 3.32 we see there are only finitely many pairs (P, λ) for which
[Hλ,iν ⊗ Λpp∗]K ∼= [V λ ⊗ Λpp∗]KM ̸= {0}.

We begin our proof with m ̸= 1 implies the vanishing of ρ(2)(X). In view of the preceding
discussions it suffice to concern with the case m ≥ 2.

Given a parabolic subgroup P =MAN , we choose a unit vector Y ∈ a, and denote its orthogonal
complement in p to be pY . Recall m normalizing a, hence we have p∗ = R ·Y ∗⊕p∗Y is a decomposition
of KM -module. Therefore, in the representation ring of KM , we have since ΛlY ∗ = 0 for any l ≥ 2,
that:

n∑
p=1

(−1)p · p · Λpp∗ =
n∑
p=1

(−1)p · p · [Λpp∗Y ⊕ Λp−1p∗Y ]

=

n∑
p=1

(−1)p · p · Λpp∗Y +

n−1∑
p=0

(−1)p+1 · (p+ 1)Λpp∗Y

=
n∑
l=0

(−1)l+1Λlp∗Y = Λoddp∗Y − Λevenp∗Y

(3.100)

In the case when dim a ≥ 2, then we can find another H ∈ a ∩ pY . We consider the Clifford multipli-
cation of H, that is: cℓ(H) := ∧H + ⌞H : Λevenp∗ ↔ Λoddp∗. Since M centralizes H, we have cℓ(H)
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is homomorphism of KM -modules. It is also an isomorphism by checking its action on bases. Hence
Λevenp∗ and Λoddp∗ are isomorphic KM -modules. We then conclude from this and 3.100 for such P ,∑

(−1)ppΛpp∗ = 0. Moreover, from Remark 3.2 we see all cuspidal parabolic groups P has dim a ≥ m.
Hence when m > 2, we have kX(t) ≡ 0 and consequently the L2-torsion vanish.

From now on let m = 1. From the discussions above we see the fundamental parabolic group
P =MAN is the only that of our concern, which has dim a = 1. In this case we have, asK0

M := K∩M0-
modules pY ∼= pm⊕n, where pm = p∩m. Consequently, subbing this into 3.100 we have as K0

M -modules:

n∑
p=0

(−1)p · p · Λpp∗ =
n∑
p=0

(−1)p+1Λp(p∗m ⊕ n∗) =
dim n∑
l=0

(−1)l+1(Λevenp∗m − Λoddp∗m)⊗ Λln (3.101)

Since P is fundamental, we can conclude that the discrete series of M are exactly the representations
induced by M0.7 Consequently by Frobenius reciprocity, we have [V λ ⊗ Λpp∗]KM ∼= [V λ

0 ⊗ Λpp∗]K
0
M ,

where V λ
0 ∈ (M̂0)d is the respective discrete series representation of M0 such that V λ = indMM0

(V λ).
Consequently 3.101 and 3.99 altogether gives a concrete formula of kX(t):

kX(t) =
1

2

dim n∑
l=0

∑
λ∈M̂d

(−1)l+1 dim[V λ ⊗ (Λevenp∗m − Λoddp∗m)⊗ Λln]KMQa,λ

=
1

2

dim n∑
l=0

∑
λ∈M̂d

(−1)l+1 dim[V λ
0 ⊗ (Λevenp∗m − Λoddp∗m)⊗ Λln]K

0
MQa,λ

(3.102)

where Qa,λ =
∫
a∗ e

−t(∥ν∥2+∥ρa∥2−πλ(ΩM ))pλ(iν) dν.
Lastly we see in the case P is fundamental, pλ admits an explicit formula as in Theorem 3.15. We

want to compute the constant C this time. This can help us in deciding the kX for rather simple Xs.
To prepare for this, we choose positive root system ∆+ for (gC : hC) and restrict it to (kC : tC) to
have a positive root system ∆+

k , where t is the Cartan subalgebra of km, of k and of m. We denote the
respective half sum of positive roots to be ρG and ρK again. Now:

Lemma 3.40. Let P =MAN be the fundamental parabolic subgroup of G. Denote:

WA := {k ∈ K | Adk a = a}/KM SdA := {exp(iX)K | X ∈ a} ⊂ Xd (3.103)

then we have the constant C in Plancherel formula takes the following form:

C =
1

|WA|(2π)
n+m

2

∏
α∈∆+⟨α, ρG⟩∏
α∈∆+

k
⟨α, ρK⟩

=
1

|WA|
vol(SdA)

(2π)m
1

vol(Xd)
(3.104)

Proof. The first equality is explicitly computed in [HC76, Theorem 27.3]. Note in the original text
the normalization of the measure dg and dν is different from ours by a constant of 2

n−dim a0
2 and

(2π)m respectively. Moreover the constant cM and cG arising in the text are computed in [HC75,
Theorem 37.1]. Summing up all these we have the first equality.

The second equality comes from [HC75, Lemma 37.4], which says for all connected Lie group K
with maximal torus T we have: ∏

α∈∆+

⟨α, ρk⟩ = (2π)
dimK/T

2
vol(T )

vol(K)
(3.105)

7We conceal much details here. By [Kna16, Proposition 12.32] we have M̂d are all induced representations of M̂ ♯
d,

with M ♯ := M0ZM = M0F (B−) (see [Kna16, Lemma 12.30(1)]. When P is fundamental, the respective Cartan group
is compact, hence has no real roots, whence M ♯ = M0, hence our claim is true.
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where the volume are those induced by ⟨−,−⟩ on the left-hand side and ∆+ is a positive root system
associated with (k, t). Now in particular this holds for the compact dual Gd, which has maximal torus
Hd with Lie algebra of t⊕ ia, dual to h = t⊕ a of g. Now apply this to the middle term, we have:∏

α∈∆+⟨α, ρG⟩∏
α∈∆+

k
⟨α, ρK⟩

= (2π)
n−m

2
vol(K) vol(Hd)

vol(Gd) vol(T )
= (2π)

n−m
2

vol(SdA)

vol(Xd)
(3.106)

where the last equality comes from the fact that the map Hd/T → Xd : hT 7→ hK is an isometric
embedding with the image SdA.

The expression of the constant term now gives an analytic proof of Hirzebruch Proportionality:

Corollary 3.41 (Hirzebruch Proportionality). If the fundamental rank of X = G/K is nontrivial,
then χ(Γ\X) = 0. Otherwise, one has:

χ(Γ\X)

vol(Γ\X)
= (−1)dim(X)/2 χ(X

d)

vol(Xd)
(3.107)

Proof. The first part on Euler characteristic follows directly from Part I of Theorem 3.36. So it suffices
to consider the case when Ĝd ̸= ∅. From Lemma 3.40 and Weyl Dimension formula implies the
plancherel density at π ∈ Ĝd is:

pπ = dim(τ)/ vol(Xd) (3.108)

where τ is an finite-dimensional representation of G such that χτ = χπ. From Theorem 3.30 the
infinitesimal character of π ∈ Ĝd are W (tC : gC)-invariant, so for fixed infinitesimal character there
are |W (tC:gC)|

|W (tC:kC)| -many equivalence classes of discrete series representations. By [Bot65, Page 175], we

have |W (tC:gC)|
|W (tC:kC)| = χ(Xd), and now arguing in the backward direction of Part I, by 3.80 and the above

discussion, one has:

(−1)(dimX)/2χ(Γ\X) = b
(2)
dimX

2

(X) = vol(Γ\X)
∑
π∈Ĝd

χπ=χ0=δG

pπ = vol(Γ\X)
χ(Xd)

vol(Xd)
(3.109)

and we have the desired equality.

We could of course compute kX(t) using 3.102 for general X with fundamental rank 1, but this
will be extremely complicated. In view of Theorem 3.8 we can break X down to irreducible cases and
the perform the computation for these spaces. More explicitly, we take:

Γ\X = (Γ1 × Γ0)\(X1 ×X0) = (Γ1\G1/K1)× (Γ0\G0/K0)

where Γ = Γ1 × Γ0, and X1 and X0 are respectively the universal cover of their quotients by Γ1 and
Γ0, with m(X0) = 0 and m(X1) = 1. Now the product formula gives:

ρ(2)(X;N (Γ)) = χ(Γ0\X0)ρ
(2)(X1,N (Γ1)) (3.110)

Apply Hirzebruch Proportionality we have:

ρ(2)(X) =
χ(Γ0\X0)

vol(Γ0\X0)
ρ(2)(X1) =

(−1)(dimX0)/2χ(Xd
0 )

vol(Xd
0 )

ρ(2)(X1)

In particular Theorem 3.36.IV.(a) is proved.
Now to prove Theorem 3.36.III it suffices to evaluate 3.102 for the simple Lie groups X1 with

m(X1) = 1. By classification of simple Lie groups we have

X1 = SL(3,R)/SO(3) or X1 = SO(p, q)0/(SO(p)× SO(q)) for p ≤ q odd
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We shall handle them in parallel.
Before embarking on proving the main theorem, we are first to compute some constants occurring

in 3.102. First consider the size of M̂d. For fundamental parabolic subgroup recall M̂d are all induced
from (M̂0)d. Since M0 is linear connected reductive group with fundamental rank 0, we can apply
Theorem 3.13 to parametrize M̂d by it∗ modulo the action of

WKM
:= NKM

(t)/T = NKM
(t)/ZKM

(t) =W (T :M)8 (3.111)

Moreover, we see from Theorem 3.30 the infinitesimal character are W (tC : mC)-invariant, so altogether
we have for fixed infinitesimal character there are |W (tC:mC)|

|WKM
| -many equivalence classes of discrete series

representations. This term is grouped with WA in Lemma 3.40 by the following lemma:

Lemma 3.42. LetG be a simple Lie group with fundamental rank 1, with P =MAN the fundamental
parabolic group. Let Wkm be the algebraic Weyl group associated to ∆(tC : (km

C)). Then:

|WKM
|

|Wkm |
· |WA| = 2 (3.112)

Proof. From [Kna13, Propsition 7.19(b)] we see |M/M0| = |KM/K
0
M |. For k ∈ KM , we have Adk t is

a maximal torus of km and thus there exists a k0 ∈ K0
M such that Adk t = Adk0 t. Hence for KM/K

0
M

we can find representative NKM
(t) and there are canonical isomorphism:

KM/K
0
M
∼= NKM

(t)/NK0
M
(t) ∼=WKM

/Wkm (3.113)

Summing up, we have |WKM
/Wkm | equals to the number of connected components of M . Choose ap

a maximal abelian subspace of p containing a, with corresponding restricted roots Σ = ∆(a : g), with
respective Weyl group W (Σ). Now from [Kna16, Theorem 5.17] we have:

W (Ap : G) := NK(ap)/ZK(ap) =W (Σ) (3.114)

Now following the arguments of [Kna13, Proposition 7.85] we see each element of WA have a rep-
resentative in W (A : G) := NK(a)/ZK(a) and can be extended to a member of W (Ap : G). Now
an case-by-case study yields that the only case in which W (Σ) contains an nontrivial element that
fixes a is when G = SO(p, 1)0, in which case M is connected. In all other cases, M has exactly two
components. This proves the lemma.

This together with Lemma 3.40, yields an more integrated expression of the constant:

|W (tC : mC)|
|WKM

|
· C =

|W (tC : mC)|
|Wkm |

·
vol(SdA)

(2π)m
1

vol(Xd)
(3.115)

Proof of Theorem 3.36.IV.(b) (c). In the sequel we evaluate 3.102 in the following steps:
First we evaluate the dimension term. For respective X1 one has:

M ∼=


SO(p− 1, q − 1) if G1 = SO(p, q)0

{

(
A 0

0 1

)
| ∥detA∥ = 1} if G1 = SL(3,R)

n ∼=

{
Rp+q−2 if G1 = SO(p, q)0

R2 if G1 = SL(3,R)

(3.116)
Moreover, the M0-representations on Λln∗ ⊗ C is irreducible for all l except when G = SO(p, q)0

and l = 1
2 dim n takes the middle degree. This can be easily derived from Weyl dimension formula

(c.f.[Kna16, Theorem 4.48ff]) In the latter case we have two irreducible components Λ+n⊕ Λ−n.
8Note here we use analytic Weyl group rather than the algebraic Weyl group of the original theorem. This is a

byproduct of the induced representation when passing from M0 to M . For details, see [Kna16, Proposition 12.32]
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Now we mimic the proof of part I, by replacing the pair (G,K) by (M0,K
0
M ). Then we see similarly,

by arguing backwards on Theorem 3.34 we have in both cases of X1:

dim[V λ
0 ⊗ Λpp∗m ⊗ Λln∗]K

0
M =

{
1 if 2p = dimm− dim km = dim pm and χλ = χΛln∗

0 if otherwise
(3.117)

with χ denotes the infinitesimal character of respective representations. Then we see the dimension
term in 3.102 is in fact the Euler characteristic of the chain complex C∗(m,K0

M , E), which is only
non-vanishing in the middle dimension. Consequently, we have:

dim[V λ
0 ⊗ (Λevenp∗m − Λoddp∗m)⊗ Λln]K

0
M =

{
(−1)

1
2
dim pm if χλ = χΛln∗

0 if otherwise
(3.118)

Similarly we have the same result when replacing Λln∗ by Λ+n∗ and Λ−n∗.
The second step is to compute Qa,λ. This comprises of three parts, namely ρa, πλ(ΩM ) and pλ(iν).
To compute ρa and πλ(ΩM ), we first coin the root systems and weights of pertinent representations.

We first calculate all of these for G = SO(p, q). In such case m = so(p − 1, q − 1). In the sequel we
realize the maximally compact Cartan subalgebra h = t⊕a as follows. Denote Ei,j to be the elementary
matrix with 1 at (i, j)-entry and zero elsewhere. We take the following basis of h:

Hi =


Ep,p+1 + Ep+1,q for i = 1
√
−1(E2i−3,2i−2 − E2i−2,2i−3) for 2 ≤ i ≤ p+1

2√
−1(E2i−1,2i − E2i,2i−1) for p+1

2 < i ≤ p+q
2

(3.119)

From now on take n := p+q
2 , Then we take a, t respectively to be:

a := RH1 t :=
n⊕
i=2

√
−1Hi

Then define the root systems {ei} of (hC)∗ with respect to Hi, then:

∆(hC : gC) = {±ei ± ej , 1 ≤ i < j ≤ n}
∆(tC : mC) = {±ei ± ej , 2 ≤ i < j ≤ n}

Moreover, we fix positive systems of roots by:

∆+(hC : gC) := {ei + ej | i ̸= j} ⊔ {ei − ej : i < j}
∆+(tC : mC) := {ei + ej | i ̸= j, i, j ≥ 2} ⊔ {ei − ej | 2 ≤ i < j}

So readily we see the half sum of restricted roots are respectively:

ρa = ρg|a =
1

2

n∑
i=2

e1 + ei + e1 − ei = (n− 1)e1 =
1

2
dim n · e1

ρM =
1

2
((n− 2)e2 + · · ·+ (n− 2)en) + ((n− 2)e2 + (n− 4)e3 + · · ·+ (n− 2(n− 1))en)

= (n− 2)e2 + (n− 3)e3 + · · ·+ 0en

(3.120)

Next we compute πλ(ΩM ): By 3.118, it suffices to consider all those πλ such that χλ = χΛ∗n∗ for
∗ = l,+,−. On the other hand since Λ∗n∗ are all finite-dimensional representations, we suffices to use
[Kna13, Proposition 5.28(b)] to see:

χΛ∗n∗(ΩM ) = (∥Λ∗ + ρM∥2 − ∥ρM∥2) (3.121)
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where Λ∗ is the highest weight of Λ∗n∗ for ∗ = l,+,−. Consequently, we suffices to evaluate the highest
weight for each representations. First we need to compute the highest weight of representation from
that of their compact dual Md = SO(p + q − 2) and then take the effect of Cartan involution into
consideration.

For the natural representation of SO(p+ q − 2) on ΛlRp+q−2, we extend it to a representation on
ΛlCp+q−2. In such case we have the weights of the representations are of the form:{

± ej1 ± · · · ± ejr | 2 ≤ j1 < · · · < jr with r ≤ l if l ≤ n or r ≤ 2n− l if l ≤ n
}

Consequently we have the highest weight respectively being:

e2 + · · · eN if N ≤ n or e2 + · · ·+ e2n−N if N > n (3.122)

Next note e2, · · · , en−1 are compact roots, and en is noncompact root, hence the Cartan involution
acts on representations via:

(λ2, · · · , λn) 7→ (λ2, · · · , λn−1,−λn) (3.123)

Since the last entry of ρM is zero, we see it does not affect the norm. Altogether we have for l < n−1:

χΛln∗(ΩM ) = (∥Λl + δM∥2 − ∥δM∥2)
= ∥(n− 1, · · · , n− l, n− l − 2, · · · , 0)∥2 − ∥(n− 2, · · · , 0)∥2

= (2n− 3 + 2n− 5 + · · ·+ 2n− 2l − 1) · ∥e1∥2

= (2n− l − 2)l · ∥e1∥2 = (dim n− l)l · ∥e1∥2

(3.124)

since for all i, ∥ei∥2 = ∥e1∥2 the normalization factor. Also from the above result we easily see for
l > n− 1, we have the same χΛln∗(ΩM ) by symmetry. For ∗ = ± case, we similarly get:

χΛ±n∗(ΩM ) = (n(n− 2) + (±1)2) · ∥e1∥2 = (n− 1)2 · ∥e1∥2 = (
1

2
dim n)2∥e1∥2 (3.125)

Summarizing, we have for all cases of SO(p, q)0, we have:

∥ρa∥2 − χλ∗n∗(ΩM ) = ((n− 1)2 − l(2n− l − 2))∥α0∥2 =
dim n

2
∥α0∥2 (3.126)

For G = SL(3,R) we follow the same procedure. Again we fix the maximally compact Cartan
subalgebra h = t⊕ a as follows:

a := R(H1 :=

1 0 0
0 1 0
0 0 −2

) t := R(H2 :=

 0 1 0
−1 0 0
0 0 0

) (3.127)

and m ∼= sl2(R) with the matrix embedded as an upper left block. Next fix f1 ∈ a∗ and f2 ∈ it∗ by
f1(H1) = 3 for f2(H2) = i, and fix f1 as the positive restricted root of (g : a). Consequently one can
define the positive roots by:

∆+(hC : gC) = {2f2, f1 + f2, f1 − f2} ∆+(tC : mC) = {2f2} (3.128)

We see ∥f2∥2 = 1
3∥f1∥

2 and ⟨f1, f2⟩ = 0. Now the finite-dimensional representations of M0 are
parametrized by their highest weights {kf2 | k ∈ N} and ρa = f1, ρM = f2 and ρG = f1 + f2.

Moreover the only nontrivial representation of M0 is on Λ1C2, which corresponds to the highest
weight f2. Hence under the bases (λ1, λ2) = λ1f1 + λ2f2, we have:

χΛ1n∗(ΩM ) = ∥(0, 1) + (0, 1)∥2 − ∥(0, 1)∥2 = 3∥f2∥2 = ∥f1∥2 (3.129)
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The third step is to compute the constant term. In 3.115, we have m = 1, and SdA is a circle of radius
inverse of the normalization factor we choose. Consequently vol(Sd

A)
2π = 1

∥α0∥ , where α0 ∈ a∗ the unique
positive root, which is e1 in the case of SO(p, q)0 and f1 in the case of SL(3,R).

Now we bring 3.115, 3.118, and the formula of pλ(iν) in Plancherel formula altogether into 3.102,

kX(t) = (−1)
dim pm+dim n

2
1

2∥α0∥ vol(Xd)
· |W (tC : mC)|

|Wkm |

dim n∑
l=0

(−1)l+1kl(t) (3.130)

with kl explicitly to be:

kl(t) =


∫
a∗ e

−t(∥ν∥2+(dim n
2

−l)2∥α0∥2)∏
α∈∆+

⟨λl+iν,α⟩
⟨ρg,α⟩ dν if G = SO(p, q)0, l ̸= dim n

2∫
a∗ e

−t∥ν∥2 · (
∏
α∈∆+

⟨λ++iν,α⟩
⟨ρg,α⟩ +

∏
α∈∆+

⟨λ−+iν,α⟩
⟨ρg,α⟩ ) dν if G = SO(p, q)0, l = dim n

2∫
a∗ e

−t(∥ν∥2+(1−l)2∥α0∥2)∏
α∈∆+

⟨λl+iν,α⟩
⟨ρg,α⟩ dν if G = SL(3,R), l = 0, 1, 2

(3.131)
To complete our computation, let kP,c(t) =

∫∞
−∞ e−t(y

2+c2)P (iy) dy. We note when P is an even
polynomial, we can apply the method of [Fri86, Lemma 2,3]. For the reader’s convenience, we record
it here:

Lemma 3.43. Let P be an even polynomial of dimension 2n. Then the Mellin transform of F (t) :=∫
R e

−ty2P (iy) dy with parameter s ∈ C, for c > 0,

Ms(e
−tc2F (t)) :=

∫ ∞

0
ts−1e−tc

2
F (t) dt (3.132)

exists for Re(s) > 2n + 1, which admits a meromorphic continuation with respect to s to C which is
regular at 0, with

M0(e
−tc2F (t)) = −2π

∫ c

0
P (y) dy (3.133)

Proof of the Lemma. By linearity we suffices to assume P = y2a. Then:

F (t) = (− ∂

∂t
)a
∫
R
e−ty

2
dy = (− ∂

∂t
)a
√
πt−1/2 = bat

−a−(1/2)

where ba =
√
π 1
2 ·

3
2 · · ·

2a−1
2 . i.e., F (t)t

1
2 is a polynomial Q(t−1) of degree n. Next:

Ms(e
−tc2F (t)) = ba

∫ ∞

0
ts−a−

1
2
−1e−tc

2
dt = baΓ(s− a−

1

2
)c−2(s−a− 1

2
) (3.134)

Now for c > 0 and for Res > a+ 1
2 the meromorphic extension of Gamma function gives the desired

extension, and since when s = 0, we have Γ(−a − 1
2) not on negative integral points, the function is

hence regular at s = 0, with the value be:

M0(e
−tc2F (t)) = baΓ(−a−

1

2
)c2a+1 = (−1)a+1 2

2a+ 2

√
π · −1

2
· −3
2
· · · −2a− 1

2
· Γ(−2a− 1

2
)c2a+1

=
√
π ·
√
π · (−1)a+1 2π

2a+ 1
c2a+1 = −2π

∫ c

0
(iy)2a dy

by using z · Γ(z) = Γ(z + 1) and Γ(12) =
√
π. Now the general result follow from linearity.

Use this lemma we then see we can save the problem of split the integral into half as in 2.30, and
it makes sense to speak of d

ds(
1

Γ(s)Ms(e
−tc2F ))|s=0. Moreover, since 1/Γ(0) = 0 and d

ds
1

Γ(s) |s=0 = 1,
we have

d

ds
(

1

Γ(s)
Ms(e

−tc2F ))
∣∣∣
s=0

= −2π
∫ c

0
P (y) dy (3.135)
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Now it is time to evaluate P explicitly, which in our case is the product term in 3.131. We shall handle
them case by case. In the first case, recall 3.124 in particular gives:

λl =

l+1∑
i−2

(n− i+ 1)ei +

n∑
i=l+2

(n− i)ei (3.136)

for n = dim n
2 + 1 Note for all i, ∥ei∥ = ∥e1∥. Hence the product term in such case is

Pl(iν · e1) =
n−1∏
j=1

n∏
q=j+1

⟨
√
−1ν · e1 +

∑l+1
i=2(n− i+ 1)ei +

∑n
i=l+2(n− i)ei, ej + eq⟩

⟨
∑n

k=1(n− k)ek, ej + eq⟩

·
n−1∏
j=1

n∏
q=j+1

⟨
√
−1ν · e1 +

∑l+1
i=2(n− i+ 1)ei +

∑n
i=l+2(n− i)ei, ej − eq⟩

⟨
∑n

k=1(n− k)ek, ej − eq⟩

=

∏
1≤i≤n
i ̸=l+1

(−ν2 − (n− i)2)
∏

1≤j<i≤n
i,j ̸=l+1

((n− j)2 − (n− i)2)∏
1≤j<i≤n((n− j)2 − (n− i)2)

= (−1)l ·
∏

1≤j≤n
j ̸=l+1

−ν2 − (n− j)2

(n− l − 1)2 − (n− j)2

(3.137)

Next for l = dim n
2 -case, we note P+(iν) = P−(iν), hence it suffices to compute one of them. Now:

P+(iν) =

∏n−1
i=1 (−ν2 − (n− i)2)

∏
1≤j<i≤n−1((n− j)2 − (n− i)2)∏

1≤j<i≤n((n− j)2 − (n− i)2)
=

n−1∏
i=1

−ν2 − (n− i)2

(n− i)2
(3.138)

Note if c = 0, Lemma 3.43 in particular says F behaves like polynomial. Hence it is standard analysis
to prove this part contributes nothing to the L2-torsion.

Now apply Lemma 3.43 to 3.130. There are a few more terms we can further simplify. First note
pl = pdim n

2
−l. Moreover, when X = SO(p, q)0/(SO(p) × SO(q)), denote n := dim n

2 + 1 = p+q
2 , mC ∼=

so(2n,C), in which case kCm
∼= so(p− 1,C)⊕ so(q − 1,C), and consequently |W (tC : mC)| = (n− 1)!2n,

and |Wkm | =
p−1
2 ! q−1

2 !2n−1, and |W (tC:mC)|
|Wkm | = 2

( p+q−2
2

p−1
2

)
. Taking all of these together, we have:

ρ(2)an (X) = (−1)
pq−1

2

2π
( p+q−2

2
p−1
2

)
vol(Xd)

·
n−1∑
l=0

(−1)2l+2

∫ n−1−l

0

( ∏
1≤j≤n
j ̸=l+1

ν2 − (n− j)2

(n− l − 1)2 − (n− j)2
)
dν (3.139)

Now to prove ρ(2) is non-vanishing in such case, one suffices to prove each summand in the formula
above have the same parity. Here we follow the strategy of [BV13, 5.9.1]. Denote for 0 ≤ l ≤ n − 1,
that:

Πl(ν) :=
∏

1≤j≤n
j ̸=l+1

ν2 − (n− j)2

(n− l − 1)2 − (n− j)2
Ql(ν) :=

l∑
j=0

Πj(ν)

Note Πk(±(n− 1− j)) = δjk and use Lagrangian polynomial we see it is the unique even polynomial
of degree ≤ 2n− 2 such that:

Qk(±(n− 1− j)) =

{
1 if j ≤ k
0 if n− 1 ≥ j > k

Moreover, we have:
n−1∑
l=0

∫ n−l−1

0
Πl(t) dt =

n−2∑
l=0

∫ n−l−1

n−l−2
Ql(t) dt (3.140)
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3.4. L2-INVARIANTS OF SYMMETRIC SPACES

Now it suffices to observe each integral on the right is positive. Note Q′
k have no roots between

[n − k − 2, n − k − 1], since degQ′
k ≤ 2n − 3, and from definition of Qk we have a root on each

interval [j, j + 1] for each integral 1− n ≤ j < n− 1, with j ̸= ±k. Hence we have Qk is constant on
[n−k−2, n−k−1]. Moreover, Qn(t) is a polynomial of degree 2n−2 and equals to 1 at 2n+2 distinct
points. Consequently, Qn ≡ 1. Consequently, we have ρ(2)an ̸= 0, with the parity solely determined by
(pq − 1)/2.

To conclude the case with SO(p, q)0, we shall not further burden the readers with cumbersome
computation. Instead we note 3.139 is only dependent on p + q. Hence it suffices to compute the
results fo SO(p, 1)0/SO(p) ∼= Hp the hyperbolic space. This was handled with great detail in [HS98].

Lastly we compute X = SL(3,R)/SO(3). Recall the computation in SO(p, q)0-case, we see the
product part in 3.131 is independent of our normalization of inner product, hence it suffices to assume
∥f1∥ = 3∥f2∥ = 1, with: ∏

α∈∆+

⟨ρG, α⟩ = (1 +
1

3
)(1− 1

3
)(2 · 1

3
) =

16

27
(3.141)

Hence we have P0(ν · f1) = P2(ν · f1) = 9ν2−1
8 , and P1(ν · f1) = 9ν2−4

4 . Argue as SO(p, q)0-case, we
see again the middle-order term does not contribute to the L2-torsion, and |W (tC : mC)| = |Wkm | = 1,
and from 3.130 we have:

ρ(2)an (SL(3,R)/SO(3)) = (−1)2+1+1 · 2π

vol(Xd)

∫ 1

0

9ν2 − 1

8
dν =

π

2 · vol(Xd)
(3.142)

To this point is the proof of Theorem 3.36.IV.(b) & (c) finished.

Proof of Theorem 3.36.III. This part now readily follows from Theorem 3.36.IV since we have
proved the non-vanishing result of all cases of X1. Hence the proof of Theorem 3.36 is finished.
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